mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-15 14:36:54 +00:00
community: Added functions to make async calls to HuggingFaceHub's embedding endpoint in HuggingFaceHubEmbeddings class (#15737)
**Description:** Added aembed_documents() and aembed_query() async functions in HuggingFaceHubEmbeddings class in langchain_community\embeddings\huggingface_hub.py file. It will support to make async calls to HuggingFaceHub's embedding endpoint and generate embeddings asynchronously. Test Cases: Added test_huggingfacehub_embedding_async_documents() and test_huggingfacehub_embedding_async_query() functions in test_huggingface_hub.py file to test the two async functions created in HuggingFaceHubEmbeddings class. Documentation: Updated huggingfacehub.ipynb with steps to install huggingface_hub package and use HuggingFaceHubEmbeddings. **Dependencies:** None, **Twitter handle:** I do not have a Twitter account --------- Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
This commit is contained in:
@@ -106,7 +106,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdin",
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Enter your HF Inference API Key:\n",
|
||||
@@ -148,6 +148,75 @@
|
||||
"query_result = embeddings.embed_query(text)\n",
|
||||
"query_result[:3]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "19ef2d31",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Hugging Face Hub\n",
|
||||
"We can also generate embeddings locally via the Hugging Face Hub package, which requires us to install ``huggingface_hub ``"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "39e85945",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install huggingface_hub"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c78a2779",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings import HuggingFaceHubEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "116f3ce7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = HuggingFaceHubEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d6f97ee9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"text = \"This is a test document.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fb6adc67",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_result = embeddings.embed_query(text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1f42c311",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_result[:3]"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
Reference in New Issue
Block a user