mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-22 14:49:29 +00:00
community: Added functions to make async calls to HuggingFaceHub's embedding endpoint in HuggingFaceHubEmbeddings class (#15737)
**Description:** Added aembed_documents() and aembed_query() async functions in HuggingFaceHubEmbeddings class in langchain_community\embeddings\huggingface_hub.py file. It will support to make async calls to HuggingFaceHub's embedding endpoint and generate embeddings asynchronously. Test Cases: Added test_huggingfacehub_embedding_async_documents() and test_huggingfacehub_embedding_async_query() functions in test_huggingface_hub.py file to test the two async functions created in HuggingFaceHubEmbeddings class. Documentation: Updated huggingfacehub.ipynb with steps to install huggingface_hub package and use HuggingFaceHubEmbeddings. **Dependencies:** None, **Twitter handle:** I do not have a Twitter account --------- Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
This commit is contained in:
parent
eb9b334a6b
commit
e26e1f8b37
@ -106,7 +106,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdin",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Enter your HF Inference API Key:\n",
|
"Enter your HF Inference API Key:\n",
|
||||||
@ -148,6 +148,75 @@
|
|||||||
"query_result = embeddings.embed_query(text)\n",
|
"query_result = embeddings.embed_query(text)\n",
|
||||||
"query_result[:3]"
|
"query_result[:3]"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "19ef2d31",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Hugging Face Hub\n",
|
||||||
|
"We can also generate embeddings locally via the Hugging Face Hub package, which requires us to install ``huggingface_hub ``"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "39e85945",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install huggingface_hub"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "c78a2779",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain_community.embeddings import HuggingFaceHubEmbeddings"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "116f3ce7",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"embeddings = HuggingFaceHubEmbeddings()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "d6f97ee9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"text = \"This is a test document.\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "fb6adc67",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"query_result = embeddings.embed_query(text)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "1f42c311",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"query_result[:3]"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
@ -29,6 +29,7 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
client: Any #: :meta private:
|
client: Any #: :meta private:
|
||||||
|
async_client: Any #: :meta private:
|
||||||
model: Optional[str] = None
|
model: Optional[str] = None
|
||||||
"""Model name to use."""
|
"""Model name to use."""
|
||||||
repo_id: Optional[str] = None
|
repo_id: Optional[str] = None
|
||||||
@ -53,7 +54,7 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
|||||||
)
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from huggingface_hub import InferenceClient
|
from huggingface_hub import AsyncInferenceClient, InferenceClient
|
||||||
|
|
||||||
if values["model"]:
|
if values["model"]:
|
||||||
values["repo_id"] = values["model"]
|
values["repo_id"] = values["model"]
|
||||||
@ -67,12 +68,20 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
|||||||
model=values["model"],
|
model=values["model"],
|
||||||
token=huggingfacehub_api_token,
|
token=huggingfacehub_api_token,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
async_client = AsyncInferenceClient(
|
||||||
|
model=values["model"],
|
||||||
|
token=huggingfacehub_api_token,
|
||||||
|
)
|
||||||
|
|
||||||
if values["task"] not in VALID_TASKS:
|
if values["task"] not in VALID_TASKS:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Got invalid task {values['task']}, "
|
f"Got invalid task {values['task']}, "
|
||||||
f"currently only {VALID_TASKS} are supported"
|
f"currently only {VALID_TASKS} are supported"
|
||||||
)
|
)
|
||||||
values["client"] = client
|
values["client"] = client
|
||||||
|
values["async_client"] = async_client
|
||||||
|
|
||||||
except ImportError:
|
except ImportError:
|
||||||
raise ImportError(
|
raise ImportError(
|
||||||
"Could not import huggingface_hub python package. "
|
"Could not import huggingface_hub python package. "
|
||||||
@ -97,6 +106,23 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
|||||||
)
|
)
|
||||||
return json.loads(responses.decode())
|
return json.loads(responses.decode())
|
||||||
|
|
||||||
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Async Call to HuggingFaceHub's embedding endpoint for embedding search docs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: The list of texts to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of embeddings, one for each text.
|
||||||
|
"""
|
||||||
|
# replace newlines, which can negatively affect performance.
|
||||||
|
texts = [text.replace("\n", " ") for text in texts]
|
||||||
|
_model_kwargs = self.model_kwargs or {}
|
||||||
|
responses = await self.async_client.post(
|
||||||
|
json={"inputs": texts, "parameters": _model_kwargs}, task=self.task
|
||||||
|
)
|
||||||
|
return json.loads(responses.decode())
|
||||||
|
|
||||||
def embed_query(self, text: str) -> List[float]:
|
def embed_query(self, text: str) -> List[float]:
|
||||||
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
|
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
|
||||||
|
|
||||||
@ -108,3 +134,15 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
|||||||
"""
|
"""
|
||||||
response = self.embed_documents([text])[0]
|
response = self.embed_documents([text])[0]
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
async def aembed_query(self, text: str) -> List[float]:
|
||||||
|
"""Async Call to HuggingFaceHub's embedding endpoint for embedding query text.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embeddings for the text.
|
||||||
|
"""
|
||||||
|
response = await self.aembed_documents([text])[0]
|
||||||
|
return response
|
||||||
|
@ -13,6 +13,15 @@ def test_huggingfacehub_embedding_documents() -> None:
|
|||||||
assert len(output[0]) == 768
|
assert len(output[0]) == 768
|
||||||
|
|
||||||
|
|
||||||
|
async def test_huggingfacehub_embedding_async_documents() -> None:
|
||||||
|
"""Test huggingfacehub embeddings."""
|
||||||
|
documents = ["foo bar"]
|
||||||
|
embedding = HuggingFaceHubEmbeddings()
|
||||||
|
output = await embedding.aembed_documents(documents)
|
||||||
|
assert len(output) == 1
|
||||||
|
assert len(output[0]) == 768
|
||||||
|
|
||||||
|
|
||||||
def test_huggingfacehub_embedding_query() -> None:
|
def test_huggingfacehub_embedding_query() -> None:
|
||||||
"""Test huggingfacehub embeddings."""
|
"""Test huggingfacehub embeddings."""
|
||||||
document = "foo bar"
|
document = "foo bar"
|
||||||
@ -21,6 +30,14 @@ def test_huggingfacehub_embedding_query() -> None:
|
|||||||
assert len(output) == 768
|
assert len(output) == 768
|
||||||
|
|
||||||
|
|
||||||
|
async def test_huggingfacehub_embedding_async_query() -> None:
|
||||||
|
"""Test huggingfacehub embeddings."""
|
||||||
|
document = "foo bar"
|
||||||
|
embedding = HuggingFaceHubEmbeddings()
|
||||||
|
output = await embedding.aembed_query(document)
|
||||||
|
assert len(output) == 768
|
||||||
|
|
||||||
|
|
||||||
def test_huggingfacehub_embedding_invalid_repo() -> None:
|
def test_huggingfacehub_embedding_invalid_repo() -> None:
|
||||||
"""Test huggingfacehub embedding repo id validation."""
|
"""Test huggingfacehub embedding repo id validation."""
|
||||||
# Only sentence-transformers models are currently supported.
|
# Only sentence-transformers models are currently supported.
|
||||||
|
Loading…
Reference in New Issue
Block a user