diff --git a/cookbook/Multi_modal_RAG_google.ipynb b/cookbook/Multi_modal_RAG_google.ipynb index 35bdfff7642..579f8c7dfe1 100644 --- a/cookbook/Multi_modal_RAG_google.ipynb +++ b/cookbook/Multi_modal_RAG_google.ipynb @@ -185,7 +185,7 @@ " )\n", " # Text summary chain\n", " model = VertexAI(\n", - " temperature=0, model_name=\"gemini-pro\", max_tokens=1024\n", + " temperature=0, model_name=\"gemini-2.0-flash-lite-001\", max_tokens=1024\n", " ).with_fallbacks([empty_response])\n", " summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()\n", "\n", @@ -254,7 +254,7 @@ "\n", "def image_summarize(img_base64, prompt):\n", " \"\"\"Make image summary\"\"\"\n", - " model = ChatVertexAI(model=\"gemini-pro-vision\", max_tokens=1024)\n", + " model = ChatVertexAI(model=\"gemini-2.0-flash\", max_tokens=1024)\n", "\n", " msg = model.invoke(\n", " [\n", @@ -394,7 +394,7 @@ "# The vectorstore to use to index the summaries\n", "vectorstore = Chroma(\n", " collection_name=\"mm_rag_cj_blog\",\n", - " embedding_function=VertexAIEmbeddings(model_name=\"textembedding-gecko@latest\"),\n", + " embedding_function=VertexAIEmbeddings(model_name=\"text-embedding-005\"),\n", ")\n", "\n", "# Create retriever\n", @@ -553,7 +553,7 @@ " \"\"\"\n", "\n", " # Multi-modal LLM\n", - " model = ChatVertexAI(temperature=0, model_name=\"gemini-pro-vision\", max_tokens=1024)\n", + " model = ChatVertexAI(temperature=0, model_name=\"gemini-2.0-flash\", max_tokens=1024)\n", "\n", " # RAG pipeline\n", " chain = (\n",