mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-09 06:53:59 +00:00
add llamaapi (#8140)
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
"""Experimental LLM wrappers."""
|
||||
|
||||
from langchain_experimental.llms.jsonformer_decoder import JsonFormer
|
||||
from langchain_experimental.llms.llamaapi import ChatLlamaAPI
|
||||
from langchain_experimental.llms.rellm_decoder import RELLM
|
||||
|
||||
__all__ = ["RELLM", "JsonFormer"]
|
||||
__all__ = ["RELLM", "JsonFormer", "ChatLlamaAPI"]
|
||||
|
136
libs/experimental/langchain_experimental/llms/llamaapi.py
Normal file
136
libs/experimental/langchain_experimental/llms/llamaapi.py
Normal file
@@ -0,0 +1,136 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import (
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
Mapping,
|
||||
Optional,
|
||||
Tuple,
|
||||
)
|
||||
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.chat_models.base import BaseChatModel
|
||||
from langchain.schema import (
|
||||
ChatGeneration,
|
||||
ChatResult,
|
||||
)
|
||||
from langchain.schema.messages import (
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
ChatMessage,
|
||||
FunctionMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
||||
role = _dict["role"]
|
||||
if role == "user":
|
||||
return HumanMessage(content=_dict["content"])
|
||||
elif role == "assistant":
|
||||
# Fix for azure
|
||||
# Also OpenAI returns None for tool invocations
|
||||
content = _dict.get("content") or ""
|
||||
if _dict.get("function_call"):
|
||||
_dict["function_call"]["arguments"] = json.dumps(
|
||||
_dict["function_call"]["arguments"]
|
||||
)
|
||||
additional_kwargs = {"function_call": dict(_dict["function_call"])}
|
||||
else:
|
||||
additional_kwargs = {}
|
||||
return AIMessage(content=content, additional_kwargs=additional_kwargs)
|
||||
elif role == "system":
|
||||
return SystemMessage(content=_dict["content"])
|
||||
elif role == "function":
|
||||
return FunctionMessage(content=_dict["content"], name=_dict["name"])
|
||||
else:
|
||||
return ChatMessage(content=_dict["content"], role=role)
|
||||
|
||||
|
||||
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
||||
if isinstance(message, ChatMessage):
|
||||
message_dict = {"role": message.role, "content": message.content}
|
||||
elif isinstance(message, HumanMessage):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
elif isinstance(message, AIMessage):
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
if "function_call" in message.additional_kwargs:
|
||||
message_dict["function_call"] = message.additional_kwargs["function_call"]
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, FunctionMessage):
|
||||
message_dict = {
|
||||
"role": "function",
|
||||
"content": message.content,
|
||||
"name": message.name,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
if "name" in message.additional_kwargs:
|
||||
message_dict["name"] = message.additional_kwargs["name"]
|
||||
return message_dict
|
||||
|
||||
|
||||
class ChatLlamaAPI(BaseChatModel):
|
||||
client: Any #: :meta private:
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
message_dicts, params = self._create_message_dicts(messages, stop)
|
||||
_params = {"messages": message_dicts}
|
||||
final_params = {**params, **kwargs, **_params}
|
||||
response = self.client.run(final_params).json()
|
||||
return self._create_chat_result(response)
|
||||
|
||||
def _create_message_dicts(
|
||||
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
||||
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
||||
params = dict(self._client_params)
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
||||
return message_dicts, params
|
||||
|
||||
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
||||
generations = []
|
||||
for res in response["choices"]:
|
||||
message = _convert_dict_to_message(res["message"])
|
||||
gen = ChatGeneration(
|
||||
message=message,
|
||||
generation_info=dict(finish_reason=res.get("finish_reason")),
|
||||
)
|
||||
generations.append(gen)
|
||||
return ChatResult(generations=generations)
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def _client_params(self) -> Mapping[str, Any]:
|
||||
"""Get the parameters used for the client."""
|
||||
return {}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of chat model."""
|
||||
return "llama-api"
|
Reference in New Issue
Block a user