mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-27 17:08:47 +00:00
community: add SambaNova embeddings integration (#21227)
- **Description:** SambaNova hosted embeddings integration
This commit is contained in:
parent
df1c10260c
commit
e65652c3e8
91
docs/docs/integrations/text_embedding/sambanova.ipynb
Normal file
91
docs/docs/integrations/text_embedding/sambanova.ipynb
Normal file
@ -0,0 +1,91 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# SambaNova\n",
|
||||
"\n",
|
||||
"**[SambaNova](https://sambanova.ai/)'s** [Sambastudio](https://sambanova.ai/technology/full-stack-ai-platform) is a platform for running your own open-source models\n",
|
||||
"\n",
|
||||
"This example goes over how to use LangChain to interact with SambaNova embedding models"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## SambaStudio\n",
|
||||
"\n",
|
||||
"**SambaStudio** allows you to train, run batch inference jobs, and deploy online inference endpoints to run open source models that you fine tuned yourself."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"A SambaStudio environment is required to deploy a model. Get more information at [sambanova.ai/products/enterprise-ai-platform-sambanova-suite](https://sambanova.ai/products/enterprise-ai-platform-sambanova-suite)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Register your environment variables:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"sambastudio_base_url = \"<Your SambaStudio environment URL>\"\n",
|
||||
"sambastudio_project_id = \"<Your SambaStudio project id>\"\n",
|
||||
"sambastudio_endpoint_id = \"<Your SambaStudio endpoint id>\"\n",
|
||||
"sambastudio_api_key = \"<Your SambaStudio endpoint API key>\"\n",
|
||||
"\n",
|
||||
"# Set the environment variables\n",
|
||||
"os.environ[\"SAMBASTUDIO_EMBEDDINGS_BASE_URL\"] = sambastudio_base_url\n",
|
||||
"os.environ[\"SAMBASTUDIO_EMBEDDINGS_PROJECT_ID\"] = sambastudio_project_id\n",
|
||||
"os.environ[\"SAMBASTUDIO_EMBEDDINGS_ENDPOINT_ID\"] = sambastudio_endpoint_id\n",
|
||||
"os.environ[\"SAMBASTUDIO_EMBEDDINGS_API_KEY\"] = sambastudio_api_key"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Call SambaStudio hosted embeddings directly from LangChain!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_community.embeddings.sambanova import SambaStudioEmbeddings\n",
|
||||
"\n",
|
||||
"embeddings = SambaStudioEmbeddings()\n",
|
||||
"\n",
|
||||
"text = \"Hello, this is a test\"\n",
|
||||
"result = embeddings.embed_query(text)\n",
|
||||
"print(result)\n",
|
||||
"\n",
|
||||
"texts = [\"Hello, this is a test\", \"Hello, this is another test\"]\n",
|
||||
"results = embeddings.embed_documents(texts)\n",
|
||||
"print(results)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
@ -178,6 +178,9 @@ if TYPE_CHECKING:
|
||||
from langchain_community.embeddings.sagemaker_endpoint import (
|
||||
SagemakerEndpointEmbeddings,
|
||||
)
|
||||
from langchain_community.embeddings.sambanova import (
|
||||
SambaStudioEmbeddings,
|
||||
)
|
||||
from langchain_community.embeddings.self_hosted import (
|
||||
SelfHostedEmbeddings,
|
||||
)
|
||||
@ -276,6 +279,7 @@ __all__ = [
|
||||
"QuantizedBgeEmbeddings",
|
||||
"QuantizedBiEncoderEmbeddings",
|
||||
"SagemakerEndpointEmbeddings",
|
||||
"SambaStudioEmbeddings",
|
||||
"SelfHostedEmbeddings",
|
||||
"SelfHostedHuggingFaceEmbeddings",
|
||||
"SelfHostedHuggingFaceInstructEmbeddings",
|
||||
@ -350,6 +354,7 @@ _module_lookup = {
|
||||
"QuantizedBiEncoderEmbeddings": "langchain_community.embeddings.optimum_intel",
|
||||
"OracleEmbeddings": "langchain_community.embeddings.oracleai",
|
||||
"SagemakerEndpointEmbeddings": "langchain_community.embeddings.sagemaker_endpoint",
|
||||
"SambaStudioEmbeddings": "langchain_community.embeddings.sambanova",
|
||||
"SelfHostedEmbeddings": "langchain_community.embeddings.self_hosted",
|
||||
"SelfHostedHuggingFaceEmbeddings": "langchain_community.embeddings.self_hosted_hugging_face", # noqa: E501
|
||||
"SelfHostedHuggingFaceInstructEmbeddings": "langchain_community.embeddings.self_hosted_hugging_face", # noqa: E501
|
||||
|
142
libs/community/langchain_community/embeddings/sambanova.py
Normal file
142
libs/community/langchain_community/embeddings/sambanova.py
Normal file
@ -0,0 +1,142 @@
|
||||
from typing import Dict, Generator, List
|
||||
|
||||
import requests
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class SambaStudioEmbeddings(BaseModel, Embeddings):
|
||||
"""SambaNova embedding models.
|
||||
|
||||
To use, you should have the environment variables
|
||||
``SAMBASTUDIO_EMBEDDINGS_BASE_URL``, ``SAMBASTUDIO_EMBEDDINGS_PROJECT_ID``,
|
||||
``SAMBASTUDIO_EMBEDDINGS_ENDPOINT_ID``, ``SAMBASTUDIO_EMBEDDINGS_API_KEY``,
|
||||
set with your personal sambastudio variable or pass it as a named parameter
|
||||
to the constructor.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import SambaStudioEmbeddings
|
||||
embeddings = SambaStudioEmbeddings(sambastudio_embeddings_base_url=base_url,
|
||||
sambastudio_embeddings_project_id=project_id,
|
||||
sambastudio_embeddings_endpoint_id=endpoint_id,
|
||||
sambastudio_embeddings_api_key=api_key)
|
||||
(or)
|
||||
embeddings = SambaStudioEmbeddings()
|
||||
"""
|
||||
|
||||
API_BASE_PATH = "/api/predict/nlp/"
|
||||
"""Base path to use for the API usage"""
|
||||
|
||||
sambastudio_embeddings_base_url: str = ""
|
||||
"""Base url to use"""
|
||||
|
||||
sambastudio_embeddings_project_id: str = ""
|
||||
"""Project id on sambastudio for model"""
|
||||
|
||||
sambastudio_embeddings_endpoint_id: str = ""
|
||||
"""endpoint id on sambastudio for model"""
|
||||
|
||||
sambastudio_embeddings_api_key: str = ""
|
||||
"""sambastudio api key"""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["sambastudio_embeddings_base_url"] = get_from_dict_or_env(
|
||||
values, "sambastudio_embeddings_base_url", "SAMBASTUDIO_EMBEDDINGS_BASE_URL"
|
||||
)
|
||||
values["sambastudio_embeddings_project_id"] = get_from_dict_or_env(
|
||||
values,
|
||||
"sambastudio_embeddings_project_id",
|
||||
"SAMBASTUDIO_EMBEDDINGS_PROJECT_ID",
|
||||
)
|
||||
values["sambastudio_embeddings_endpoint_id"] = get_from_dict_or_env(
|
||||
values,
|
||||
"sambastudio_embeddings_endpoint_id",
|
||||
"SAMBASTUDIO_EMBEDDINGS_ENDPOINT_ID",
|
||||
)
|
||||
values["sambastudio_embeddings_api_key"] = get_from_dict_or_env(
|
||||
values, "sambastudio_embeddings_api_key", "SAMBASTUDIO_EMBEDDINGS_API_KEY"
|
||||
)
|
||||
return values
|
||||
|
||||
def _get_full_url(self, path: str) -> str:
|
||||
"""
|
||||
Return the full API URL for a given path.
|
||||
|
||||
:param str path: the sub-path
|
||||
:returns: the full API URL for the sub-path
|
||||
:rtype: str
|
||||
"""
|
||||
return f"{self.sambastudio_embeddings_base_url}{self.API_BASE_PATH}{path}"
|
||||
|
||||
def _iterate_over_batches(self, texts: List[str], batch_size: int) -> Generator:
|
||||
"""Generator for creating batches in the embed documents method
|
||||
Args:
|
||||
texts (List[str]): list of strings to embed
|
||||
batch_size (int, optional): batch size to be used for the embedding model.
|
||||
Will depend on the RDU endpoint used.
|
||||
Yields:
|
||||
List[str]: list (batch) of strings of size batch size
|
||||
"""
|
||||
for i in range(0, len(texts), batch_size):
|
||||
yield texts[i : i + batch_size]
|
||||
|
||||
def embed_documents(
|
||||
self, texts: List[str], batch_size: int = 32
|
||||
) -> List[List[float]]:
|
||||
"""Returns a list of embeddings for the given sentences.
|
||||
Args:
|
||||
texts (`List[str]`): List of texts to encode
|
||||
batch_size (`int`): Batch size for the encoding
|
||||
|
||||
Returns:
|
||||
`List[np.ndarray]` or `List[tensor]`: List of embeddings
|
||||
for the given sentences
|
||||
"""
|
||||
http_session = requests.Session()
|
||||
url = self._get_full_url(
|
||||
f"{self.sambastudio_embeddings_project_id}/{self.sambastudio_embeddings_endpoint_id}"
|
||||
)
|
||||
|
||||
embeddings = []
|
||||
|
||||
for batch in self._iterate_over_batches(texts, batch_size):
|
||||
data = {"inputs": batch}
|
||||
response = http_session.post(
|
||||
url,
|
||||
headers={"key": self.sambastudio_embeddings_api_key},
|
||||
json=data,
|
||||
)
|
||||
embedding = response.json()["data"]
|
||||
embeddings.extend(embedding)
|
||||
|
||||
return embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Returns a list of embeddings for the given sentences.
|
||||
Args:
|
||||
sentences (`List[str]`): List of sentences to encode
|
||||
|
||||
Returns:
|
||||
`List[np.ndarray]` or `List[tensor]`: List of embeddings
|
||||
for the given sentences
|
||||
"""
|
||||
http_session = requests.Session()
|
||||
url = self._get_full_url(
|
||||
f"{self.sambastudio_embeddings_project_id}/{self.sambastudio_embeddings_endpoint_id}"
|
||||
)
|
||||
|
||||
data = {"inputs": [text]}
|
||||
|
||||
response = http_session.post(
|
||||
url,
|
||||
headers={"key": self.sambastudio_embeddings_api_key},
|
||||
json=data,
|
||||
)
|
||||
embedding = response.json()["data"][0]
|
||||
|
||||
return embedding
|
@ -0,0 +1,22 @@
|
||||
"""Test SambaNova Embeddings."""
|
||||
|
||||
from langchain_community.embeddings.sambanova import (
|
||||
SambaStudioEmbeddings,
|
||||
)
|
||||
|
||||
|
||||
def test_embedding_documents() -> None:
|
||||
"""Test embeddings for documents."""
|
||||
documents = ["foo", "bar"]
|
||||
embedding = SambaStudioEmbeddings()
|
||||
output = embedding.embed_documents(documents)
|
||||
assert len(output) == 2
|
||||
assert len(output[0]) == 1024
|
||||
|
||||
|
||||
def test_embedding_query() -> None:
|
||||
"""Test embeddings for query."""
|
||||
document = "foo bar"
|
||||
embedding = SambaStudioEmbeddings()
|
||||
output = embedding.embed_query(document)
|
||||
assert len(output) == 1024
|
@ -67,6 +67,7 @@ EXPECTED_ALL = [
|
||||
"QuantizedBiEncoderEmbeddings",
|
||||
"NeMoEmbeddings",
|
||||
"SparkLLMTextEmbeddings",
|
||||
"SambaStudioEmbeddings",
|
||||
"TitanTakeoffEmbed",
|
||||
"QuantizedBgeEmbeddings",
|
||||
"PremAIEmbeddings",
|
||||
|
Loading…
Reference in New Issue
Block a user