core,langchain,community[patch]: allow langsmith 0.2 (#28598)

This commit is contained in:
Bagatur
2024-12-10 10:50:58 -08:00
committed by GitHub
parent bc4dc7f4b1
commit e6a62d8422
16 changed files with 588 additions and 426 deletions

View File

@@ -3,7 +3,7 @@
import math
import os
import tempfile
from typing import List
from typing import List, cast
import numpy as np
import pytest
@@ -60,13 +60,13 @@ class RandomEmbeddings(Embeddings):
"""Fake embeddings with random vectors. For testing purposes."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [np.random.rand(100).tolist() for _ in texts]
return [cast(list[float], np.random.rand(100).tolist()) for _ in texts]
def embed_query(self, text: str) -> List[float]:
return np.random.rand(100).tolist()
return cast(list[float], np.random.rand(100).tolist())
def embed_image(self, uris: List[str]) -> List[List[float]]:
return [np.random.rand(100).tolist() for _ in uris]
return [cast(list[float], np.random.rand(100).tolist()) for _ in uris]
class IncrementalEmbeddings(Embeddings):

View File

@@ -1,5 +1,7 @@
"""Test vector store utility functions."""
from typing import cast
import numpy as np
from langchain_core.documents import Document
@@ -53,7 +55,7 @@ def test_maximal_marginal_relevance() -> None:
def test_maximal_marginal_relevance_query_dim() -> None:
query_embedding = np.random.random(size=5)
query_embedding_2d = query_embedding.reshape((1, 5))
embedding_list = np.random.random(size=(4, 5)).tolist()
embedding_list = cast(list[list[float]], np.random.random(size=(4, 5)).tolist())
first = maximal_marginal_relevance(query_embedding, embedding_list)
second = maximal_marginal_relevance(query_embedding_2d, embedding_list)
assert first == second