langchain: add RankLLM Reranker (#21171)

Integrate RankLLM reranker (https://github.com/castorini/rank_llm) into
LangChain

An example notebook is given in
`docs/docs/integrations/retrievers/rankllm-reranker.ipynb`

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
Eric Zhang
2024-05-22 16:12:55 -04:00
committed by GitHub
parent 14a9c7c44e
commit e7e41eaabe
7 changed files with 927 additions and 2 deletions

View File

@@ -14,12 +14,16 @@ if TYPE_CHECKING:
from langchain_community.document_compressors.openvino_rerank import (
OpenVINOReranker,
)
from langchain_community.document_compressors.rankllm_rerank import (
RankLLMRerank,
)
_module_lookup = {
"LLMLinguaCompressor": "langchain_community.document_compressors.llmlingua_filter",
"OpenVINOReranker": "langchain_community.document_compressors.openvino_rerank",
"JinaRerank": "langchain_community.document_compressors.jina_rerank",
"RankLLMRerank": "langchain_community.document_compressors.rankllm_rerank",
"FlashrankRerank": "langchain_community.document_compressors.flashrank_rerank",
}
@@ -31,4 +35,10 @@ def __getattr__(name: str) -> Any:
raise AttributeError(f"module {__name__} has no attribute {name}")
__all__ = ["LLMLinguaCompressor", "OpenVINOReranker", "FlashrankRerank", "JinaRerank"]
__all__ = [
"LLMLinguaCompressor",
"OpenVINOReranker",
"FlashrankRerank",
"JinaRerank",
"RankLLMRerank",
]

View File

@@ -0,0 +1,124 @@
from __future__ import annotations
from copy import deepcopy
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, Optional, Sequence
from langchain.retrievers.document_compressors.base import BaseDocumentCompressor
from langchain_core.callbacks.manager import Callbacks
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import Extra, Field, PrivateAttr, root_validator
from langchain_core.utils import get_from_dict_or_env
if TYPE_CHECKING:
from rank_llm.data import Candidate, Query, Request
else:
# Avoid pydantic annotation issues when actually instantiating
# while keeping this import optional
try:
from rank_llm.data import Candidate, Query, Request
except ImportError:
pass
class RankLLMRerank(BaseDocumentCompressor):
"""Document compressor using Flashrank interface."""
client: Any = None
"""RankLLM client to use for compressing documents"""
top_n: int = Field(default=3)
"""Top N documents to return."""
model: str = Field(default="zephyr")
"""Name of model to use for reranking."""
step_size: int = Field(default=10)
"""Step size for moving sliding window."""
gpt_model: str = Field(default="gpt-3.5-turbo")
"""OpenAI model name."""
_retriever: Any = PrivateAttr()
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate python package exists in environment."""
if not values.get("client"):
client_name = values.get("model", "zephyr")
try:
model_enum = ModelType(client_name.lower())
except ValueError:
raise ValueError(
"Unsupported model type. Please use 'vicuna', 'zephyr', or 'gpt'."
)
try:
if model_enum == ModelType.VICUNA:
from rank_llm.rerank.vicuna_reranker import VicunaReranker
values["client"] = VicunaReranker()
elif model_enum == ModelType.ZEPHYR:
from rank_llm.rerank.zephyr_reranker import ZephyrReranker
values["client"] = ZephyrReranker()
elif model_enum == ModelType.GPT:
from rank_llm.rerank.rank_gpt import SafeOpenai
from rank_llm.rerank.reranker import Reranker
openai_api_key = get_from_dict_or_env(
values, "open_api_key", "OPENAI_API_KEY"
)
agent = SafeOpenai(
model=values["gpt_model"],
context_size=4096,
keys=openai_api_key,
)
values["client"] = Reranker(agent)
except ImportError:
raise ImportError(
"Could not import rank_llm python package. "
"Please install it with `pip install rank_llm`."
)
return values
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
request = Request(
query=Query(text=query, qid=1),
candidates=[
Candidate(doc={"text": doc.page_content}, docid=index, score=1)
for index, doc in enumerate(documents)
],
)
rerank_results = self.client.rerank(
request,
rank_end=len(documents),
window_size=min(20, len(documents)),
step=10,
)
final_results = []
for res in rerank_results.candidates:
doc = documents[int(res.docid)]
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
final_results.append(doc_copy)
return final_results[: self.top_n]
class ModelType(Enum):
VICUNA = "vicuna"
ZEPHYR = "zephyr"
GPT = "gpt"

View File

@@ -0,0 +1 @@
"""Test document compressor integrations."""

View File

@@ -0,0 +1,8 @@
"""Test rankllm reranker."""
from langchain_community.document_compressors.rankllm_rerank import RankLLMRerank
def test_rankllm_reranker_init() -> None:
"""Test the RankLLM reranker initializes correctly."""
RankLLMRerank()

View File

@@ -4,6 +4,7 @@ EXPECTED_ALL = [
"LLMLinguaCompressor",
"OpenVINOReranker",
"JinaRerank",
"RankLLMRerank",
"FlashrankRerank",
]