docs: fix kwargs docstring (#25010)

Fix:
![Screenshot 2024-08-02 at 5 33 37
PM](https://github.com/user-attachments/assets/7c56cdeb-ee81-454c-b3eb-86aa8a9bdc8d)
This commit is contained in:
Bagatur
2024-08-02 19:54:54 -07:00
committed by GitHub
parent 57747892ce
commit e81ddb32a6
61 changed files with 143 additions and 143 deletions

View File

@@ -178,7 +178,7 @@ class Aerospike(VectorStore):
wait_for_index: If True, wait for the all the texts to be indexed
before returning. Requires index_name to be provided. Defaults
to True.
**kwargs: Additional keyword arguments to pass to the client upsert call.
kwargs: Additional keyword arguments to pass to the client upsert call.
Returns:
List of ids from adding the texts into the vectorstore.

View File

@@ -396,7 +396,7 @@ class ApertureDB(VectorStore):
texts: List of text strings
embedding: Embeddings object as for constructing the vectorstore
metadatas: Optional list of metadatas associated with the texts.
**kwargs: Additional arguments to pass to the constructor
kwargs: Additional arguments to pass to the constructor
"""
store = cls(embeddings=embedding, **kwargs)
store.add_texts(texts, metadatas)
@@ -416,7 +416,7 @@ class ApertureDB(VectorStore):
documents: List of Document objects
embedding: Embeddings object as for constructing the vectorstore
metadatas: Optional list of metadatas associated with the texts.
**kwargs: Additional arguments to pass to the constructor
kwargs: Additional arguments to pass to the constructor
"""
store = cls(embeddings=embedding, **kwargs)
store.add_documents(documents)

View File

@@ -272,7 +272,7 @@ class Clarifai(VectorStore):
token (Optional[str], optional): Session token. Defaults to None.
metadatas (Optional[List[dict]]): Optional list
of metadatas. Defaults to None.
**kwargs: Additional keyword arguments to be passed to the Search.
kwargs: Additional keyword arguments to be passed to the Search.
Returns:
Clarifai: Clarifai vectorstore.
@@ -310,7 +310,7 @@ class Clarifai(VectorStore):
to return during vector search. Defaults to None.
pat (Optional[str], optional): Personal access token. Defaults to None.
token (Optional[str], optional): Session token. Defaults to None.
**kwargs: Additional keyword arguments to be passed to the Search.
kwargs: Additional keyword arguments to be passed to the Search.
Returns:
Clarifai: Clarifai vectorstore.

View File

@@ -385,7 +385,7 @@ class DeepLake(VectorStore):
model was trained. The search is performed using the Deep Memory model.
If False, the distance metric is set to "COS" or whatever distance
metric user specifies.
**kwargs: Additional keyword arguments.
kwargs: Additional keyword arguments.
Returns:
List of Documents by the specified distance metric,
@@ -505,7 +505,7 @@ class DeepLake(VectorStore):
Args:
k (int): Number of Documents to return. Defaults to 4.
query (str): Text to look up similar documents.
**kwargs: Additional keyword arguments include:
kwargs: Additional keyword arguments include:
embedding (Callable): Embedding function to use. Defaults to None.
distance_metric (str): 'L2' for Euclidean, 'L1' for Nuclear, 'max'
for L-infinity, 'cos' for cosine, 'dot' for dot product.
@@ -567,7 +567,7 @@ class DeepLake(VectorStore):
embedding (Union[List[float], np.ndarray]):
Embedding to find similar docs.
k (int): Number of Documents to return. Defaults to 4.
**kwargs: Additional keyword arguments including:
kwargs: Additional keyword arguments including:
filter (Union[Dict, Callable], optional):
Additional filter before embedding search.
- ``Dict`` - Key-value search on tensors of htype json. True
@@ -636,7 +636,7 @@ class DeepLake(VectorStore):
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
**kwargs: Additional keyword arguments. Some of these arguments are:
kwargs: Additional keyword arguments. Some of these arguments are:
distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity
distance, `cos` for cosine similarity, 'dot' for dot product.
Defaults to `L2`.
@@ -728,7 +728,7 @@ class DeepLake(VectorStore):
which the model was trained. The search is performed using the Deep
Memory model. If False, the distance metric is set to "COS" or
whatever distance metric user specifies.
**kwargs: Additional keyword arguments.
kwargs: Additional keyword arguments.
Returns:
List[Documents] - A list of documents.
@@ -795,7 +795,7 @@ class DeepLake(VectorStore):
which the model was trained. The search is performed using the Deep
Memory model. If False, the distance metric is set to "COS" or
whatever distance metric user specifies.
**kwargs: Additional keyword arguments
kwargs: Additional keyword arguments
Returns:
List of Documents selected by maximal marginal relevance.
@@ -866,7 +866,7 @@ class DeepLake(VectorStore):
Note, in other places, it is called embedding_function.
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
ids (Optional[List[str]]): List of document IDs. Defaults to None.
**kwargs: Additional keyword arguments.
kwargs: Additional keyword arguments.
Returns:
DeepLake: Deep Lake dataset.

View File

@@ -255,7 +255,7 @@ class DuckDB(VectorStore):
texts: List of strings to add to the vector store.
embedding: The embedding function or model to use for generating embeddings.
metadatas: Optional list of metadata dictionaries associated with the texts.
**kwargs: Additional keyword arguments including:
kwargs: Additional keyword arguments including:
- connection: DuckDB connection. If not provided, a new connection will
be created.
- vector_key: The column name for storing vectors. Default "vector".

View File

@@ -285,7 +285,7 @@ class TiDBVectorStore(VectorStore):
Args:
ids (Optional[List[str]]): A list of vector IDs to delete.
**kwargs: Additional keyword arguments.
kwargs: Additional keyword arguments.
"""
self._tidb.delete(ids=ids, **kwargs)
@@ -305,7 +305,7 @@ class TiDBVectorStore(VectorStore):
k (int, optional): The number of results to retrieve. Defaults to 4.
filter (dict, optional): A filter to apply to the search results.
Defaults to None.
**kwargs: Additional keyword arguments.
kwargs: Additional keyword arguments.
Returns:
List[Document]: A list of Document objects representing the search results.
@@ -328,7 +328,7 @@ class TiDBVectorStore(VectorStore):
k (int, optional): The number of results to return. Defaults to 5.
filter (dict, optional): A filter to apply to the search results.
Defaults to None.
**kwargs: Additional keyword arguments.
kwargs: Additional keyword arguments.
Returns:
A list of tuples containing relevant documents and their similarity scores.

View File

@@ -428,7 +428,7 @@ class Weaviate(VectorStore):
relevance_score_fn: Function for converting whatever distance function the
vector store uses to a relevance score, which is a normalized similarity
score (0 means dissimilar, 1 means similar).
**kwargs: Additional named parameters to pass to ``Weaviate.__init__()``.
kwargs: Additional named parameters to pass to ``Weaviate.__init__()``.
Example:
.. code-block:: python

View File

@@ -639,7 +639,7 @@ class ZepVectorStore(VectorStore):
api_url (str): The URL of the Zep API.
api_key (Optional[str]): The API key for the Zep API.
config (Optional[CollectionConfig]): The configuration for the collection.
**kwargs: Additional parameters specific to the vectorstore.
kwargs: Additional parameters specific to the vectorstore.
Returns:
ZepVectorStore: An instance of ZepVectorStore.

View File

@@ -442,7 +442,7 @@ class ZepCloudVectorStore(VectorStore):
associated with the texts.
collection_name (str): The name of the collection in the Zep store.
api_key (str): The API key for the Zep API.
**kwargs: Additional parameters specific to the vectorstore.
kwargs: Additional parameters specific to the vectorstore.
Returns:
ZepVectorStore: An instance of ZepVectorStore.