mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-16 06:53:16 +00:00
docs: fix kwargs docstring (#25010)
Fix: 
This commit is contained in:
@@ -178,7 +178,7 @@ class Aerospike(VectorStore):
|
||||
wait_for_index: If True, wait for the all the texts to be indexed
|
||||
before returning. Requires index_name to be provided. Defaults
|
||||
to True.
|
||||
**kwargs: Additional keyword arguments to pass to the client upsert call.
|
||||
kwargs: Additional keyword arguments to pass to the client upsert call.
|
||||
|
||||
Returns:
|
||||
List of ids from adding the texts into the vectorstore.
|
||||
|
@@ -396,7 +396,7 @@ class ApertureDB(VectorStore):
|
||||
texts: List of text strings
|
||||
embedding: Embeddings object as for constructing the vectorstore
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
**kwargs: Additional arguments to pass to the constructor
|
||||
kwargs: Additional arguments to pass to the constructor
|
||||
"""
|
||||
store = cls(embeddings=embedding, **kwargs)
|
||||
store.add_texts(texts, metadatas)
|
||||
@@ -416,7 +416,7 @@ class ApertureDB(VectorStore):
|
||||
documents: List of Document objects
|
||||
embedding: Embeddings object as for constructing the vectorstore
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
**kwargs: Additional arguments to pass to the constructor
|
||||
kwargs: Additional arguments to pass to the constructor
|
||||
"""
|
||||
store = cls(embeddings=embedding, **kwargs)
|
||||
store.add_documents(documents)
|
||||
|
@@ -272,7 +272,7 @@ class Clarifai(VectorStore):
|
||||
token (Optional[str], optional): Session token. Defaults to None.
|
||||
metadatas (Optional[List[dict]]): Optional list
|
||||
of metadatas. Defaults to None.
|
||||
**kwargs: Additional keyword arguments to be passed to the Search.
|
||||
kwargs: Additional keyword arguments to be passed to the Search.
|
||||
|
||||
Returns:
|
||||
Clarifai: Clarifai vectorstore.
|
||||
@@ -310,7 +310,7 @@ class Clarifai(VectorStore):
|
||||
to return during vector search. Defaults to None.
|
||||
pat (Optional[str], optional): Personal access token. Defaults to None.
|
||||
token (Optional[str], optional): Session token. Defaults to None.
|
||||
**kwargs: Additional keyword arguments to be passed to the Search.
|
||||
kwargs: Additional keyword arguments to be passed to the Search.
|
||||
|
||||
Returns:
|
||||
Clarifai: Clarifai vectorstore.
|
||||
|
@@ -385,7 +385,7 @@ class DeepLake(VectorStore):
|
||||
model was trained. The search is performed using the Deep Memory model.
|
||||
If False, the distance metric is set to "COS" or whatever distance
|
||||
metric user specifies.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
List of Documents by the specified distance metric,
|
||||
@@ -505,7 +505,7 @@ class DeepLake(VectorStore):
|
||||
Args:
|
||||
k (int): Number of Documents to return. Defaults to 4.
|
||||
query (str): Text to look up similar documents.
|
||||
**kwargs: Additional keyword arguments include:
|
||||
kwargs: Additional keyword arguments include:
|
||||
embedding (Callable): Embedding function to use. Defaults to None.
|
||||
distance_metric (str): 'L2' for Euclidean, 'L1' for Nuclear, 'max'
|
||||
for L-infinity, 'cos' for cosine, 'dot' for dot product.
|
||||
@@ -567,7 +567,7 @@ class DeepLake(VectorStore):
|
||||
embedding (Union[List[float], np.ndarray]):
|
||||
Embedding to find similar docs.
|
||||
k (int): Number of Documents to return. Defaults to 4.
|
||||
**kwargs: Additional keyword arguments including:
|
||||
kwargs: Additional keyword arguments including:
|
||||
filter (Union[Dict, Callable], optional):
|
||||
Additional filter before embedding search.
|
||||
- ``Dict`` - Key-value search on tensors of htype json. True
|
||||
@@ -636,7 +636,7 @@ class DeepLake(VectorStore):
|
||||
Args:
|
||||
query (str): Query text to search for.
|
||||
k (int): Number of results to return. Defaults to 4.
|
||||
**kwargs: Additional keyword arguments. Some of these arguments are:
|
||||
kwargs: Additional keyword arguments. Some of these arguments are:
|
||||
distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity
|
||||
distance, `cos` for cosine similarity, 'dot' for dot product.
|
||||
Defaults to `L2`.
|
||||
@@ -728,7 +728,7 @@ class DeepLake(VectorStore):
|
||||
which the model was trained. The search is performed using the Deep
|
||||
Memory model. If False, the distance metric is set to "COS" or
|
||||
whatever distance metric user specifies.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
List[Documents] - A list of documents.
|
||||
@@ -795,7 +795,7 @@ class DeepLake(VectorStore):
|
||||
which the model was trained. The search is performed using the Deep
|
||||
Memory model. If False, the distance metric is set to "COS" or
|
||||
whatever distance metric user specifies.
|
||||
**kwargs: Additional keyword arguments
|
||||
kwargs: Additional keyword arguments
|
||||
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
@@ -866,7 +866,7 @@ class DeepLake(VectorStore):
|
||||
Note, in other places, it is called embedding_function.
|
||||
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
|
||||
ids (Optional[List[str]]): List of document IDs. Defaults to None.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
DeepLake: Deep Lake dataset.
|
||||
|
@@ -255,7 +255,7 @@ class DuckDB(VectorStore):
|
||||
texts: List of strings to add to the vector store.
|
||||
embedding: The embedding function or model to use for generating embeddings.
|
||||
metadatas: Optional list of metadata dictionaries associated with the texts.
|
||||
**kwargs: Additional keyword arguments including:
|
||||
kwargs: Additional keyword arguments including:
|
||||
- connection: DuckDB connection. If not provided, a new connection will
|
||||
be created.
|
||||
- vector_key: The column name for storing vectors. Default "vector".
|
||||
|
@@ -285,7 +285,7 @@ class TiDBVectorStore(VectorStore):
|
||||
|
||||
Args:
|
||||
ids (Optional[List[str]]): A list of vector IDs to delete.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs: Additional keyword arguments.
|
||||
"""
|
||||
|
||||
self._tidb.delete(ids=ids, **kwargs)
|
||||
@@ -305,7 +305,7 @@ class TiDBVectorStore(VectorStore):
|
||||
k (int, optional): The number of results to retrieve. Defaults to 4.
|
||||
filter (dict, optional): A filter to apply to the search results.
|
||||
Defaults to None.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
List[Document]: A list of Document objects representing the search results.
|
||||
@@ -328,7 +328,7 @@ class TiDBVectorStore(VectorStore):
|
||||
k (int, optional): The number of results to return. Defaults to 5.
|
||||
filter (dict, optional): A filter to apply to the search results.
|
||||
Defaults to None.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
A list of tuples containing relevant documents and their similarity scores.
|
||||
|
@@ -428,7 +428,7 @@ class Weaviate(VectorStore):
|
||||
relevance_score_fn: Function for converting whatever distance function the
|
||||
vector store uses to a relevance score, which is a normalized similarity
|
||||
score (0 means dissimilar, 1 means similar).
|
||||
**kwargs: Additional named parameters to pass to ``Weaviate.__init__()``.
|
||||
kwargs: Additional named parameters to pass to ``Weaviate.__init__()``.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
@@ -639,7 +639,7 @@ class ZepVectorStore(VectorStore):
|
||||
api_url (str): The URL of the Zep API.
|
||||
api_key (Optional[str]): The API key for the Zep API.
|
||||
config (Optional[CollectionConfig]): The configuration for the collection.
|
||||
**kwargs: Additional parameters specific to the vectorstore.
|
||||
kwargs: Additional parameters specific to the vectorstore.
|
||||
|
||||
Returns:
|
||||
ZepVectorStore: An instance of ZepVectorStore.
|
||||
|
@@ -442,7 +442,7 @@ class ZepCloudVectorStore(VectorStore):
|
||||
associated with the texts.
|
||||
collection_name (str): The name of the collection in the Zep store.
|
||||
api_key (str): The API key for the Zep API.
|
||||
**kwargs: Additional parameters specific to the vectorstore.
|
||||
kwargs: Additional parameters specific to the vectorstore.
|
||||
|
||||
Returns:
|
||||
ZepVectorStore: An instance of ZepVectorStore.
|
||||
|
Reference in New Issue
Block a user