mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 02:50:47 +00:00
docs: fix kwargs docstring (#25010)
Fix: 
This commit is contained in:
@@ -385,7 +385,7 @@ class DeepLake(VectorStore):
|
||||
model was trained. The search is performed using the Deep Memory model.
|
||||
If False, the distance metric is set to "COS" or whatever distance
|
||||
metric user specifies.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
List of Documents by the specified distance metric,
|
||||
@@ -505,7 +505,7 @@ class DeepLake(VectorStore):
|
||||
Args:
|
||||
k (int): Number of Documents to return. Defaults to 4.
|
||||
query (str): Text to look up similar documents.
|
||||
**kwargs: Additional keyword arguments include:
|
||||
kwargs: Additional keyword arguments include:
|
||||
embedding (Callable): Embedding function to use. Defaults to None.
|
||||
distance_metric (str): 'L2' for Euclidean, 'L1' for Nuclear, 'max'
|
||||
for L-infinity, 'cos' for cosine, 'dot' for dot product.
|
||||
@@ -567,7 +567,7 @@ class DeepLake(VectorStore):
|
||||
embedding (Union[List[float], np.ndarray]):
|
||||
Embedding to find similar docs.
|
||||
k (int): Number of Documents to return. Defaults to 4.
|
||||
**kwargs: Additional keyword arguments including:
|
||||
kwargs: Additional keyword arguments including:
|
||||
filter (Union[Dict, Callable], optional):
|
||||
Additional filter before embedding search.
|
||||
- ``Dict`` - Key-value search on tensors of htype json. True
|
||||
@@ -636,7 +636,7 @@ class DeepLake(VectorStore):
|
||||
Args:
|
||||
query (str): Query text to search for.
|
||||
k (int): Number of results to return. Defaults to 4.
|
||||
**kwargs: Additional keyword arguments. Some of these arguments are:
|
||||
kwargs: Additional keyword arguments. Some of these arguments are:
|
||||
distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity
|
||||
distance, `cos` for cosine similarity, 'dot' for dot product.
|
||||
Defaults to `L2`.
|
||||
@@ -728,7 +728,7 @@ class DeepLake(VectorStore):
|
||||
which the model was trained. The search is performed using the Deep
|
||||
Memory model. If False, the distance metric is set to "COS" or
|
||||
whatever distance metric user specifies.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
List[Documents] - A list of documents.
|
||||
@@ -795,7 +795,7 @@ class DeepLake(VectorStore):
|
||||
which the model was trained. The search is performed using the Deep
|
||||
Memory model. If False, the distance metric is set to "COS" or
|
||||
whatever distance metric user specifies.
|
||||
**kwargs: Additional keyword arguments
|
||||
kwargs: Additional keyword arguments
|
||||
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
@@ -866,7 +866,7 @@ class DeepLake(VectorStore):
|
||||
Note, in other places, it is called embedding_function.
|
||||
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
|
||||
ids (Optional[List[str]]): List of document IDs. Defaults to None.
|
||||
**kwargs: Additional keyword arguments.
|
||||
kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
DeepLake: Deep Lake dataset.
|
||||
|
Reference in New Issue
Block a user