mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-12 06:13:36 +00:00
community[patch]: Make ChatDatabricks model supports streaming response (#19912)
**Description:** Make ChatDatabricks model supports stream **Issue:** N/A **Dependencies:** MLflow nightly build version (we will release next MLflow version soon) **Twitter handle:** N/A Manually test: (Before testing, please install `pip install git+https://github.com/mlflow/mlflow.git`) ```python # Test Databricks Foundation LLM model from langchain.chat_models import ChatDatabricks chat_model = ChatDatabricks( endpoint="databricks-llama-2-70b-chat", max_tokens=500 ) from langchain_core.messages import AIMessageChunk for chunk in chat_model.stream("What is mlflow?"): print(chunk.content, end="|") ``` - [x] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [x] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, hwchase17. --------- Signed-off-by: Weichen Xu <weichen.xu@databricks.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
a892f985d3
commit
e9fc87aab1
@ -19,9 +19,16 @@ class ChatDatabricks(ChatMlflow):
|
||||
|
||||
chat = ChatDatabricks(
|
||||
target_uri="databricks",
|
||||
endpoint="chat",
|
||||
endpoint="databricks-llama-2-70b-chat",
|
||||
temperature-0.1,
|
||||
)
|
||||
|
||||
# single input invocation
|
||||
print(chat_model.invoke("What is MLflow?").content)
|
||||
|
||||
# single input invocation with streaming response
|
||||
for chunk in chat_model.stream("What is MLflow?"):
|
||||
print(chunk.content, end="|")
|
||||
"""
|
||||
|
||||
target_uri: str = "databricks"
|
||||
|
@ -1,24 +1,29 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
from typing import Any, Dict, Iterator, List, Mapping, Optional, cast
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.language_models.base import LanguageModelInput
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
ChatMessage,
|
||||
ChatMessageChunk,
|
||||
FunctionMessage,
|
||||
HumanMessage,
|
||||
HumanMessageChunk,
|
||||
SystemMessage,
|
||||
SystemMessageChunk,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatResult
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import (
|
||||
Field,
|
||||
PrivateAttr,
|
||||
)
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -98,13 +103,12 @@ class ChatMlflow(BaseChatModel):
|
||||
}
|
||||
return params
|
||||
|
||||
def _generate(
|
||||
def _prepare_inputs(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
) -> Dict[str, Any]:
|
||||
message_dicts = [
|
||||
ChatMlflow._convert_message_to_dict(message) for message in messages
|
||||
]
|
||||
@ -119,9 +123,76 @@ class ChatMlflow(BaseChatModel):
|
||||
data["stop"] = stop
|
||||
if self.max_tokens is not None:
|
||||
data["max_tokens"] = self.max_tokens
|
||||
|
||||
return data
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
data = self._prepare_inputs(
|
||||
messages,
|
||||
stop,
|
||||
**kwargs,
|
||||
)
|
||||
resp = self._client.predict(endpoint=self.endpoint, inputs=data)
|
||||
return ChatMlflow._create_chat_result(resp)
|
||||
|
||||
def stream(
|
||||
self,
|
||||
input: LanguageModelInput,
|
||||
config: Optional[RunnableConfig] = None,
|
||||
*,
|
||||
stop: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[BaseMessageChunk]:
|
||||
# We need to override `stream` to handle the case
|
||||
# that `self._client` does not implement `predict_stream`
|
||||
if not hasattr(self._client, "predict_stream"):
|
||||
# MLflow deployment client does not implement streaming,
|
||||
# so use default implementation
|
||||
yield cast(
|
||||
BaseMessageChunk, self.invoke(input, config=config, stop=stop, **kwargs)
|
||||
)
|
||||
else:
|
||||
yield from super().stream(input, config, stop=stop, **kwargs)
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
data = self._prepare_inputs(
|
||||
messages,
|
||||
stop,
|
||||
**kwargs,
|
||||
)
|
||||
# TODO: check if `_client.predict_stream` is available.
|
||||
chunk_iter = self._client.predict_stream(endpoint=self.endpoint, inputs=data)
|
||||
for chunk in chunk_iter:
|
||||
choice = chunk["choices"][0]
|
||||
chunk = ChatMlflow._convert_delta_to_message_chunk(choice["delta"])
|
||||
|
||||
generation_info = {}
|
||||
if finish_reason := choice.get("finish_reason"):
|
||||
generation_info["finish_reason"] = finish_reason
|
||||
if logprobs := choice.get("logprobs"):
|
||||
generation_info["logprobs"] = logprobs
|
||||
|
||||
chunk = ChatGenerationChunk(
|
||||
message=chunk, generation_info=generation_info or None
|
||||
)
|
||||
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs)
|
||||
|
||||
yield chunk
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
return self._default_params
|
||||
@ -153,6 +224,19 @@ class ChatMlflow(BaseChatModel):
|
||||
else:
|
||||
return ChatMessage(content=content, role=role)
|
||||
|
||||
@staticmethod
|
||||
def _convert_delta_to_message_chunk(_dict: Mapping[str, Any]) -> BaseMessageChunk:
|
||||
role = _dict["role"]
|
||||
content = _dict["content"]
|
||||
if role == "user":
|
||||
return HumanMessageChunk(content=content)
|
||||
elif role == "assistant":
|
||||
return AIMessageChunk(content=content)
|
||||
elif role == "system":
|
||||
return SystemMessageChunk(content=content)
|
||||
else:
|
||||
return ChatMessageChunk(content=content, role=role)
|
||||
|
||||
@staticmethod
|
||||
def _raise_functions_not_supported() -> None:
|
||||
raise ValueError(
|
||||
|
Loading…
Reference in New Issue
Block a user