diff --git a/libs/core/langchain_core/messages/__init__.py b/libs/core/langchain_core/messages/__init__.py index e8cae860bec..0b5376e109b 100644 --- a/libs/core/langchain_core/messages/__init__.py +++ b/libs/core/langchain_core/messages/__init__.py @@ -44,7 +44,7 @@ from langchain_core.messages.utils import ( _message_from_dict, convert_to_messages, filter_messages, - format_messages_as, + format_messages, get_buffer_string, merge_message_runs, message_chunk_to_message, @@ -84,5 +84,5 @@ __all__ = [ "filter_messages", "merge_message_runs", "trim_messages", - "format_messages_as", + "format_messages", ] diff --git a/libs/core/langchain_core/messages/utils.py b/libs/core/langchain_core/messages/utils.py index b63c38045b8..7875aa4bba5 100644 --- a/libs/core/langchain_core/messages/utils.py +++ b/libs/core/langchain_core/messages/utils.py @@ -934,30 +934,52 @@ def _runnable_generator(func: Callable) -> Callable: @_runnable_generator -def format_messages_as( +def format_messages( messages: Union[MessageLikeRepresentation, Sequence[MessageLikeRepresentation]], *, - format: Literal["openai", "anthropic"], + format: Literal["langchain-openai", "langchain-anthropic"], text_format: Literal["string", "block"], ) -> Union[BaseMessage, List[BaseMessage]]: """Convert message contents into a standard format. - .. versionadded:: 0.2.36 + Can be used imperatively (pass in messages, get out messages) or can be used + declaratively (call without messages, use resulting Runnable in a chain). + + .. versionadded:: 0.2.37 Args: - messages: Message-like object or iterable of objects whose contents are already + messages: Message-like object or iterable of objects whose contents are in OpenAI, Anthropic, Bedrock Converse, or VertexAI formats. - format: Format to convert message contents to. - text_format: How to format text contents. If ``text='string'`` then any string - contents are left as strings. If a message has content blocks that are all - of type 'text', these are joined with a newline to make a single string. If - a message has content blocks and at least one isn't of type 'text', then - all blocks are left as dicts. If ``text='block'`` then all contents are - turned into a list of dicts. + format: Output message format: + + - "langchain-openai": + BaseMessages with OpenAI-style contents. + - "langchain-anthropic": + BaseMessages with Anthropic-style contents. + text_format: How to format string or text block contents: + + - "string": + If a message has a string content, this is left as a string. If + a message has content blocks that are all of type 'text', these are + joined with a newline to make a single string. If a message has + content blocks and at least one isn't of type 'text', then + all blocks are left as dicts. + - "block": + If a message has a string content, this is turned into a list + with a single content block of type 'text'. If a message has content + blocks these are left as is. Returns: - A single BaseMessage is a single message-like object was passed in, else list - of BaseMessages. + The return type depends on the input type: + - BaseMessage: + If a single message-like object is passed in, a BaseMessage is + returned. + - List[BaseMessage]: + If a sequence of message-like objects are passed in, a list + of BaseMessages are returned. + - Runnable: + If no messages are passed in, a Runnable is generated that formats + messages (per the above) when invoked. .. dropdown:: Basic usage :open: @@ -965,7 +987,7 @@ def format_messages_as( .. code-block:: python from langchain_core.messages import ( - format_messages_as, + format_messages, AIMessage, HumanMessage, SystemMessage, @@ -979,7 +1001,7 @@ def format_messages_as( ToolMessage("foobar", tool_call_id="1", name="bar"), {"role": "assistant", "content": "thats nice"}, ] - oai_strings = format_messages_as(messages, format="openai", text="string") + oai_strings = format_messages(messages, format="langchain-openai", text="string") # -> [ # SystemMessage(content='foo'), # HumanMessage(content=[{'type': 'text', 'text': 'whats in this'}, {'type': 'image_url', 'image_url': {'url': "data:image/png;base64,'/9j/4AAQSk'"}}]), @@ -988,7 +1010,7 @@ def format_messages_as( # AIMessage(content='thats nice') # ] - anthropic_blocks = format_messages_as(messages, format="anthropic", text="block") + anthropic_blocks = format_messages(messages, format="langchain-anthropic", text="block") # -> [ # SystemMessage(content=[{'type': 'text', 'text': 'foo'}]), # HumanMessage(content=[{'type': 'text', 'text': 'whats in this'}, {'type': 'image', 'source': {'type': 'base64', 'media_type': 'image/png', 'data': "'/9j/4AAQSk'"}}]), @@ -997,15 +1019,15 @@ def format_messages_as( # AIMessage(content=[{'type': 'text', 'text': 'thats nice'}]) # ] - .. dropdown:: Chain usage + .. dropdown:: Chaining :open: .. code-block:: python - from langchain_core.messages import format_messages_as + from langchain_core.messages import format_messages from langchain.chat_models import init_chat_model - formatter = format_messages_as(format="openai", text="string") + formatter = format_messages(format="langchain-openai", text="string") llm = init_chat_model() | formatter llm.invoke( @@ -1020,7 +1042,16 @@ def format_messages_as( ) # -> AIMessage(["My name is...], ...) + .. dropdown:: Streaming + :open: + + .. code-block:: python + from langchain_core.messages import format_messages + from langchain.chat_models import init_chat_model + + formatter = format_messages(format="langchain-openai", text="string") + def multiply(a: int, b: int) -> int: '''Return product of a and b.''' return a * b @@ -1031,40 +1062,41 @@ def format_messages_as( "what's 5 times 2", config={"model": "claude-3-5-sonnet-20240620"} ): print(chunk) - # -> AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', usage_metadata={'input_tokens': 370, 'output_tokens': 0, 'total_tokens': 370}), - # AIMessageChunk(content='Certainly', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content='! To', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' calculate', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' 5 times ', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content='2, we can use', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' the "', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content='multiply" function that', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content="'s", id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' available to', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' us.', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' Let', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content="'s use", id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' this tool', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' to', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' get', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content=' the result.', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75'), - # AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', tool_calls=[{'name': 'multiply', 'args': {}, 'id': 'toolu_01PW8o6BkATCecjsJX8QgG6z', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'multiply', 'args': '', 'id': 'toolu_01PW8o6BkATCecjsJX8QgG6z', 'index': 1, 'type': 'tool_call_chunk'}]), - # AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', tool_calls=[{'name': '', 'args': {}, 'id': None, 'type': 'tool_call'}], tool_call_chunks=[{'name': None, 'args': '', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]), - # AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', tool_calls=[{'name': '', 'args': {'a': 5}, 'id': None, 'type': 'tool_call'}], tool_call_chunks=[{'name': None, 'args': '{"a": 5', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]), - # AIMessageChunk(content='', id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', invalid_tool_calls=[{'name': None, 'args': ', "b": 2}', 'id': None, 'error': None, 'type': 'invalid_tool_call'}], tool_call_chunks=[{'name': None, 'args': ', "b": 2}', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]), - # AIMessageChunk(content='', response_metadata={'stop_reason': 'tool_use', 'stop_sequence': None}, id='run-64757cb2-b85f-4d51-8f34-5a6c1d40ad75', usage_metadata={'input_tokens': 0, 'output_tokens': 104, 'total_tokens': 104}) + # -> AIMessageChunk(content='', id='run-6...', usage_metadata={'input_tokens': 370, 'output_tokens': 0, 'total_tokens': 370}), + # AIMessageChunk(content='Certainly', id='run-6...'), + # AIMessageChunk(content='! To', id='run-6...'), + # AIMessageChunk(content=' calculate', id='run-6...'), + # AIMessageChunk(content=' 5 times ', id='run-6...'), + # AIMessageChunk(content='2, we can use', id='run-6...'), + # AIMessageChunk(content=' the "', id='run-6...'), + # AIMessageChunk(content='multiply" function that', id='run-6...'), + # AIMessageChunk(content="'s", id='run-6...'), + # AIMessageChunk(content=' available to', id='run-6...'), + # AIMessageChunk(content=' us.', id='run-6...'), + # AIMessageChunk(content=' Let', id='run-6...'), + # AIMessageChunk(content="'s use", id='run-6...'), + # AIMessageChunk(content=' this tool', id='run-6...'), + # AIMessageChunk(content=' to', id='run-6...'), + # AIMessageChunk(content=' get', id='run-6...'), + # AIMessageChunk(content=' the result.', id='run-6...'), + # AIMessageChunk(content='', id='run-6...', tool_calls=[{'name': 'multiply', 'args': {}, 'id': 'toolu_0...', 'type': 'tool_call'}], tool_call_chunks=[{'name': 'multiply', 'args': '', 'id': 'toolu_0...', 'index': 1, 'type': 'tool_call_chunk'}]), + # AIMessageChunk(content='', id='run-6...', tool_calls=[{'name': '', 'args': {}, 'id': None, 'type': 'tool_call'}], tool_call_chunks=[{'name': None, 'args': '', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]), + # AIMessageChunk(content='', id='run-6...', tool_calls=[{'name': '', 'args': {'a': 5}, 'id': None, 'type': 'tool_call'}], tool_call_chunks=[{'name': None, 'args': '{"a": 5', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]), + # AIMessageChunk(content='', id='run-6...', invalid_tool_calls=[{'name': None, 'args': ', "b": 2}', 'id': None, 'error': None, 'type': 'invalid_tool_call'}], tool_call_chunks=[{'name': None, 'args': ', "b": 2}', 'id': None, 'index': 1, 'type': 'tool_call_chunk'}]), + # AIMessageChunk(content='', response_metadata={'stop_reason': 'tool_use', 'stop_sequence': None}, id='run-6...', usage_metadata={'input_tokens': 0, 'output_tokens': 104, 'total_tokens': 104}) """ # noqa: E501 if is_single := isinstance(messages, (BaseMessage, dict)): messages = [messages] messages = convert_to_messages(messages, copy=True) - if format.lower() == "openai": - formatted = _format_messages_as_openai(messages, text_format=text_format) - elif format.lower() == "anthropic": - formatted = _format_messages_as_anthropic(messages, text_format=text_format) + if format.lower().replace("_", "-") == "langchain-openai": + formatted = _format_messages_openai(messages, text_format=text_format) + elif format.lower().replace("_", "-") == "langchain-anthropic": + formatted = _format_messages_anthropic(messages, text_format=text_format) else: raise ValueError( - f"Unrecognized {format=}. Expected one of ('openai', 'anthropic')." + f"Unrecognized {format=}. Expected one of ('langchain-openai', " + f"'langchain-anthropic')." ) if is_single: return formatted[0] @@ -1072,7 +1104,7 @@ def format_messages_as( return formatted -def _format_messages_as_openai( +def _format_messages_openai( messages: Sequence[BaseMessage], *, text_format: Literal["string", "block"] ) -> List[BaseMessage]: """Mutates messages so their contents match OpenAI messages API.""" @@ -1226,7 +1258,7 @@ def _format_messages_as_openai( ) # Recurse to make sure tool message contents are OpenAI format. tool_messages.extend( - _format_messages_as_openai( + _format_messages_openai( [tool_message], text_format=text_format ) ) @@ -1307,7 +1339,7 @@ def _format_messages_as_openai( _OPTIONAL_ANTHROPIC_KEYS = ("cache_control", "is_error", "index") -def _format_messages_as_anthropic( +def _format_messages_anthropic( messages: Sequence[BaseMessage], *, text_format: Literal["string", "block"] ) -> List[BaseMessage]: """Mutates messages so their contents match Anthropic messages API.""" diff --git a/libs/core/tests/unit_tests/messages/test_imports.py b/libs/core/tests/unit_tests/messages/test_imports.py index 5a30b399379..9fe6ac5ae98 100644 --- a/libs/core/tests/unit_tests/messages/test_imports.py +++ b/libs/core/tests/unit_tests/messages/test_imports.py @@ -32,7 +32,7 @@ EXPECTED_ALL = [ "filter_messages", "merge_message_runs", "trim_messages", - "format_messages_as", + "format_messages", ] diff --git a/libs/core/tests/unit_tests/messages/test_utils.py b/libs/core/tests/unit_tests/messages/test_utils.py index fd1761f1e7e..7edb97b519f 100644 --- a/libs/core/tests/unit_tests/messages/test_utils.py +++ b/libs/core/tests/unit_tests/messages/test_utils.py @@ -17,7 +17,7 @@ from langchain_core.messages.utils import ( _bytes_to_b64_str, convert_to_messages, filter_messages, - format_messages_as, + format_messages, merge_message_runs, trim_messages, ) @@ -566,20 +566,20 @@ def create_base64_image(format: str = "jpeg") -> str: return f"" # noqa: E501 -def test_format_messages_as_single_message() -> None: +def test_format_messages_single_message() -> None: message = HumanMessage(content="Hello") - result = format_messages_as(message, format="openai", text_format="string") + result = format_messages(message, format="langchain-openai", text_format="string") assert isinstance(result, BaseMessage) assert result.content == "Hello" -def test_format_messages_as_multiple_messages() -> None: +def test_format_messages_multiple_messages() -> None: messages = [ SystemMessage(content="System message"), HumanMessage(content="Human message"), AIMessage(content="AI message"), ] - result = format_messages_as(messages, format="openai", text_format="string") + result = format_messages(messages, format="langchain-openai", text_format="string") assert isinstance(result, list) assert len(result) == 3 assert all(isinstance(msg, BaseMessage) for msg in result) @@ -590,7 +590,7 @@ def test_format_messages_as_multiple_messages() -> None: ] -def test_format_messages_as_openai_string() -> None: +def test_format_messages_openai_string() -> None: messages = [ HumanMessage( content=[ @@ -602,23 +602,23 @@ def test_format_messages_as_openai_string() -> None: content=[{"type": "text", "text": "Hi"}, {"type": "text", "text": "there"}] ), ] - result = format_messages_as(messages, format="openai", text_format="string") + result = format_messages(messages, format="langchain-openai", text_format="string") assert [msg.content for msg in result] == ["Hello\nWorld", "Hi\nthere"] -def test_format_messages_as_openai_block() -> None: +def test_format_messages_openai_block() -> None: messages = [ HumanMessage(content="Hello"), AIMessage(content="Hi there"), ] - result = format_messages_as(messages, format="openai", text_format="block") + result = format_messages(messages, format="langchain-openai", text_format="block") assert [msg.content for msg in result] == [ [{"type": "text", "text": "Hello"}], [{"type": "text", "text": "Hi there"}], ] -def test_format_messages_as_anthropic_string() -> None: +def test_format_messages_anthropic_string() -> None: messages = [ HumanMessage( content=[ @@ -630,30 +630,34 @@ def test_format_messages_as_anthropic_string() -> None: content=[{"type": "text", "text": "Hi"}, {"type": "text", "text": "there"}] ), ] - result = format_messages_as(messages, format="anthropic", text_format="string") + result = format_messages( + messages, format="langchain-anthropic", text_format="string" + ) assert [msg.content for msg in result] == ["Hello\nWorld", "Hi\nthere"] -def test_format_messages_as_anthropic_block() -> None: +def test_format_messages_anthropic_block() -> None: messages = [ HumanMessage(content="Hello"), AIMessage(content="Hi there"), ] - result = format_messages_as(messages, format="anthropic", text_format="block") + result = format_messages( + messages, format="langchain-anthropic", text_format="block" + ) assert [msg.content for msg in result] == [ [{"type": "text", "text": "Hello"}], [{"type": "text", "text": "Hi there"}], ] -def test_format_messages_as_invalid_format() -> None: +def test_format_messages_invalid_format() -> None: with pytest.raises(ValueError, match="Unrecognized format="): - format_messages_as( + format_messages( [HumanMessage(content="Hello")], format="invalid", text_format="string" ) -def test_format_messages_as_openai_image() -> None: +def test_format_messages_openai_image() -> None: base64_image = create_base64_image() messages = [ HumanMessage( @@ -663,12 +667,12 @@ def test_format_messages_as_openai_image() -> None: ] ) ] - result = format_messages_as(messages, format="openai", text_format="block") + result = format_messages(messages, format="langchain-openai", text_format="block") assert result[0].content[1]["type"] == "image_url" assert result[0].content[1]["image_url"]["url"] == base64_image -def test_format_messages_as_anthropic_image() -> None: +def test_format_messages_anthropic_image() -> None: base64_image = create_base64_image() messages = [ HumanMessage( @@ -678,21 +682,25 @@ def test_format_messages_as_anthropic_image() -> None: ] ) ] - result = format_messages_as(messages, format="anthropic", text_format="block") + result = format_messages( + messages, format="langchain-anthropic", text_format="block" + ) assert result[0].content[1]["type"] == "image" assert result[0].content[1]["source"]["type"] == "base64" assert result[0].content[1]["source"]["media_type"] == "image/jpeg" -def test_format_messages_as_tool_message() -> None: +def test_format_messages_tool_message() -> None: tool_message = ToolMessage(content="Tool result", tool_call_id="123") - result = format_messages_as([tool_message], format="openai", text_format="block") + result = format_messages( + [tool_message], format="langchain-openai", text_format="block" + ) assert isinstance(result[0], ToolMessage) assert result[0].content == [{"type": "text", "text": "Tool result"}] assert result[0].tool_call_id == "123" -def test_format_messages_as_tool_use() -> None: +def test_format_messages_tool_use() -> None: messages = [ AIMessage( content=[ @@ -700,21 +708,21 @@ def test_format_messages_as_tool_use() -> None: ] ) ] - result = format_messages_as(messages, format="openai", text_format="block") + result = format_messages(messages, format="langchain-openai", text_format="block") assert result[0].tool_calls[0]["id"] == "123" assert result[0].tool_calls[0]["name"] == "calculator" assert result[0].tool_calls[0]["args"] == "2+2" -def test_format_messages_as_json() -> None: +def test_format_messages_json() -> None: json_data = {"key": "value"} messages = [HumanMessage(content=[{"type": "json", "json": json_data}])] - result = format_messages_as(messages, format="openai", text_format="block") + result = format_messages(messages, format="langchain-openai", text_format="block") assert result[0].content[0]["type"] == "text" assert json.loads(result[0].content[0]["text"]) == json_data -def test_format_messages_as_guard_content() -> None: +def test_format_messages_guard_content() -> None: messages = [ HumanMessage( content=[ @@ -725,12 +733,12 @@ def test_format_messages_as_guard_content() -> None: ] ) ] - result = format_messages_as(messages, format="openai", text_format="block") + result = format_messages(messages, format="langchain-openai", text_format="block") assert result[0].content[0]["type"] == "text" assert result[0].content[0]["text"] == "Protected content" -def test_format_messages_as_vertexai_image() -> None: +def test_format_messages_vertexai_image() -> None: messages = [ HumanMessage( content=[ @@ -738,7 +746,7 @@ def test_format_messages_as_vertexai_image() -> None: ] ) ] - result = format_messages_as(messages, format="openai", text_format="block") + result = format_messages(messages, format="langchain-openai", text_format="block") assert result[0].content[0]["type"] == "image_url" assert ( result[0].content[0]["image_url"]["url"] @@ -746,27 +754,27 @@ def test_format_messages_as_vertexai_image() -> None: ) -def test_format_messages_as_invalid_block() -> None: +def test_format_messages_invalid_block() -> None: messages = [HumanMessage(content=[{"type": "invalid", "foo": "bar"}])] with pytest.raises(ValueError, match="Unrecognized content block"): - format_messages_as(messages, format="openai", text_format="block") + format_messages(messages, format="langchain-openai", text_format="block") with pytest.raises(ValueError, match="Unrecognized content block"): - format_messages_as(messages, format="anthropic", text_format="block") + format_messages(messages, format="langchain-anthropic", text_format="block") -def test_format_messages_as_empty_message() -> None: - result = format_messages_as( - HumanMessage(content=""), format="openai", text_format="string" +def test_format_messages_empty_message() -> None: + result = format_messages( + HumanMessage(content=""), format="langchain-openai", text_format="string" ) assert result.content == "" -def test_format_messages_as_empty_list() -> None: - result = format_messages_as([], format="openai", text_format="string") +def test_format_messages_empty_list() -> None: + result = format_messages([], format="langchain-openai", text_format="string") assert result == [] -def test_format_messages_as_mixed_content_types() -> None: +def test_format_messages_mixed_content_types() -> None: messages = [ HumanMessage( content=[ @@ -776,21 +784,23 @@ def test_format_messages_as_mixed_content_types() -> None: ] ) ] - result = format_messages_as(messages, format="openai", text_format="block") + result = format_messages(messages, format="langchain-openai", text_format="block") assert len(result[0].content) == 3 assert isinstance(result[0].content[0], dict) assert isinstance(result[0].content[1], dict) assert isinstance(result[0].content[2], dict) -def test_format_messages_as_anthropic_tool_calls() -> None: +def test_format_messages_anthropic_tool_calls() -> None: message = AIMessage( "blah", tool_calls=[ {"type": "tool_call", "name": "foo", "id": "1", "args": {"bar": "baz"}} ], ) - result = format_messages_as(message, format="anthropic", text_format="string") + result = format_messages( + message, format="langchain-anthropic", text_format="string" + ) assert result.content == [ {"type": "text", "text": "blah"}, {"type": "tool_use", "id": "1", "name": "foo", "input": {"bar": "baz"}}, @@ -798,8 +808,8 @@ def test_format_messages_as_anthropic_tool_calls() -> None: assert result.tool_calls == message.tool_calls -def test_format_messages_as_declarative() -> None: - formatter = format_messages_as(format="openai", text_format="block") +def test_format_messages_declarative() -> None: + formatter = format_messages(format="langchain-openai", text_format="block") base64_image = create_base64_image() messages = [ HumanMessage( @@ -996,7 +1006,7 @@ def _stream_anthropic(input_: Any) -> Iterator: @pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic]) def test_format_messages_openai_string_stream(stream: Callable) -> None: - formatter = format_messages_as(format="openai", text_format="string") + formatter = format_messages(format="langchain-openai", text_format="string") chain = RunnableLambda(stream) | formatter tool_call_idx = 1 if stream == _stream_anthropic else 0 @@ -1090,7 +1100,7 @@ def test_format_messages_openai_string_stream(stream: Callable) -> None: @pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic]) def test_format_messages_openai_block_stream(stream: Callable) -> None: - formatter = format_messages_as(format="openai", text_format="block") + formatter = format_messages(format="langchain-openai", text_format="block") chain = RunnableLambda(stream) | formatter tool_call_idx = 1 if stream == _stream_anthropic else 0 @@ -1183,7 +1193,7 @@ def test_format_messages_openai_block_stream(stream: Callable) -> None: @pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic]) def test_format_messages_anthropic_block_stream(stream: Callable) -> None: - formatter = format_messages_as(format="anthropic", text_format="block") + formatter = format_messages(format="langchain-anthropic", text_format="block") chain = RunnableLambda(stream) | formatter expected = [ @@ -1285,7 +1295,7 @@ def test_format_messages_anthropic_block_stream(stream: Callable) -> None: @pytest.mark.parametrize("stream", [_stream_oai, _stream_anthropic]) def test_format_messages_anthropic_string_stream(stream: Callable) -> None: - formatter = format_messages_as(format="anthropic", text_format="string") + formatter = format_messages(format="langchain-anthropic", text_format="string") chain = RunnableLambda(stream) | formatter expected = [