openai[minor]: implement langchain-openai package (#15503)

Todo

- [x] copy over integration tests
- [x] update docs with new instructions in #15513 
- [x] add linear ticket to bump core -> community, community->langchain,
and core->openai deps
- [ ] (optional): add `pip install langchain-openai` command to each
notebook using it
- [x] Update docstrings to not need `openai` install
- [x] Add serialization
- [x] deprecate old models

Contributor steps:

- [x] Add secret names to manual integrations workflow in
.github/workflows/_integration_test.yml
- [x] Add secrets to release workflow (for pre-release testing) in
.github/workflows/_release.yml

Maintainer steps (Contributors should not do these):

- [x] set up pypi and test pypi projects
- [x] add credential secrets to Github Actions
- [ ] add package to conda-forge


Functional changes to existing classes:

- now relies on openai client v1 (1.6.1) via concrete dep in
langchain-openai package

Codebase organization

- some function calling stuff moved to
`langchain_core.utils.function_calling` in order to be used in both
community and langchain-openai
This commit is contained in:
Erick Friis
2024-01-05 15:03:28 -08:00
committed by GitHub
parent a7d023aaf0
commit ebc75c5ca7
64 changed files with 5997 additions and 387 deletions

View File

View File

@@ -0,0 +1,221 @@
"""Test AzureChatOpenAI wrapper."""
import os
from typing import Any
import pytest
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult
from langchain_openai import AzureChatOpenAI
from tests.unit_tests.fake.callbacks import FakeCallbackHandler
OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "")
OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "")
OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "")
DEPLOYMENT_NAME = os.environ.get(
"AZURE_OPENAI_DEPLOYMENT_NAME",
os.environ.get("AZURE_OPENAI_CHAT_DEPLOYMENT_NAME", ""),
)
def _get_llm(**kwargs: Any) -> AzureChatOpenAI:
return AzureChatOpenAI(
deployment_name=DEPLOYMENT_NAME,
openai_api_version=OPENAI_API_VERSION,
azure_endpoint=OPENAI_API_BASE,
openai_api_key=OPENAI_API_KEY,
**kwargs,
)
@pytest.mark.scheduled
@pytest.fixture
def llm() -> AzureChatOpenAI:
return _get_llm(
max_tokens=10,
)
def test_chat_openai(llm: AzureChatOpenAI) -> None:
"""Test AzureChatOpenAI wrapper."""
message = HumanMessage(content="Hello")
response = llm([message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
@pytest.mark.scheduled
def test_chat_openai_generate() -> None:
"""Test AzureChatOpenAI wrapper with generate."""
chat = _get_llm(max_tokens=10, n=2)
message = HumanMessage(content="Hello")
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
def test_chat_openai_multiple_completions() -> None:
"""Test AzureChatOpenAI wrapper with multiple completions."""
chat = _get_llm(max_tokens=10, n=5)
message = HumanMessage(content="Hello")
response = chat._generate([message])
assert isinstance(response, ChatResult)
assert len(response.generations) == 5
for generation in response.generations:
assert isinstance(generation.message, BaseMessage)
assert isinstance(generation.message.content, str)
@pytest.mark.scheduled
def test_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = _get_llm(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = chat([message])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
@pytest.mark.scheduled
def test_chat_openai_streaming_generation_info() -> None:
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
# Save the generation
self.saved_things["generation"] = args[0]
callback = _FakeCallback()
callback_manager = CallbackManager([callback])
chat = _get_llm(
max_tokens=2,
temperature=0,
callback_manager=callback_manager,
)
list(chat.stream("hi"))
generation = callback.saved_things["generation"]
# `Hello!` is two tokens, assert that that is what is returned
assert generation.generations[0][0].text == "Hello!"
@pytest.mark.scheduled
async def test_async_chat_openai() -> None:
"""Test async generation."""
chat = _get_llm(max_tokens=10, n=2)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = _get_llm(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
def test_openai_streaming(llm: AzureChatOpenAI) -> None:
"""Test streaming tokens from OpenAI."""
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_astream(llm: AzureChatOpenAI) -> None:
"""Test streaming tokens from OpenAI."""
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_abatch(llm: AzureChatOpenAI) -> None:
"""Test streaming tokens from AzureChatOpenAI."""
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_abatch_tags(llm: AzureChatOpenAI) -> None:
"""Test batch tokens from AzureChatOpenAI."""
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
def test_openai_batch(llm: AzureChatOpenAI) -> None:
"""Test batch tokens from AzureChatOpenAI."""
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_ainvoke(llm: AzureChatOpenAI) -> None:
"""Test invoke tokens from AzureChatOpenAI."""
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
@pytest.mark.scheduled
def test_openai_invoke(llm: AzureChatOpenAI) -> None:
"""Test invoke tokens from AzureChatOpenAI."""
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)

View File

@@ -0,0 +1,393 @@
"""Test ChatOpenAI chat model."""
from typing import Any, Optional
import pytest
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage
from langchain_core.outputs import (
ChatGeneration,
ChatResult,
LLMResult,
)
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
from tests.unit_tests.fake.callbacks import FakeCallbackHandler
@pytest.mark.scheduled
def test_chat_openai() -> None:
"""Test ChatOpenAI wrapper."""
chat = ChatOpenAI(
temperature=0.7,
base_url=None,
organization=None,
openai_proxy=None,
timeout=10.0,
max_retries=3,
http_client=None,
n=1,
max_tokens=10,
default_headers=None,
default_query=None,
)
message = HumanMessage(content="Hello")
response = chat([message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_chat_openai_model() -> None:
"""Test ChatOpenAI wrapper handles model_name."""
chat = ChatOpenAI(model="foo")
assert chat.model_name == "foo"
chat = ChatOpenAI(model_name="bar")
assert chat.model_name == "bar"
def test_chat_openai_system_message() -> None:
"""Test ChatOpenAI wrapper with system message."""
chat = ChatOpenAI(max_tokens=10)
system_message = SystemMessage(content="You are to chat with the user.")
human_message = HumanMessage(content="Hello")
response = chat([system_message, human_message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
@pytest.mark.scheduled
def test_chat_openai_generate() -> None:
"""Test ChatOpenAI wrapper with generate."""
chat = ChatOpenAI(max_tokens=10, n=2)
message = HumanMessage(content="Hello")
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
def test_chat_openai_multiple_completions() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
chat = ChatOpenAI(max_tokens=10, n=5)
message = HumanMessage(content="Hello")
response = chat._generate([message])
assert isinstance(response, ChatResult)
assert len(response.generations) == 5
for generation in response.generations:
assert isinstance(generation.message, BaseMessage)
assert isinstance(generation.message.content, str)
@pytest.mark.scheduled
def test_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = chat([message])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
@pytest.mark.scheduled
def test_chat_openai_streaming_generation_info() -> None:
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
# Save the generation
self.saved_things["generation"] = args[0]
callback = _FakeCallback()
callback_manager = CallbackManager([callback])
chat = ChatOpenAI(
max_tokens=2,
temperature=0,
callback_manager=callback_manager,
)
list(chat.stream("hi"))
generation = callback.saved_things["generation"]
# `Hello!` is two tokens, assert that that is what is returned
assert generation.generations[0][0].text == "Hello!"
def test_chat_openai_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatOpenAI(max_tokens=10)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model_name
def test_chat_openai_streaming_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatOpenAI(max_tokens=10, streaming=True)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model_name
def test_chat_openai_invalid_streaming_params() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
with pytest.raises(ValueError):
ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
n=5,
)
@pytest.mark.scheduled
async def test_async_chat_openai() -> None:
"""Test async generation."""
chat = ChatOpenAI(max_tokens=10, n=2)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_bind_functions() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
class Person(BaseModel):
"""Identifying information about a person."""
name: str = Field(..., title="Name", description="The person's name")
age: int = Field(..., title="Age", description="The person's age")
fav_food: Optional[str] = Field(
default=None, title="Fav Food", description="The person's favorite food"
)
chat = ChatOpenAI(
max_tokens=30,
n=1,
streaming=True,
).bind_functions(functions=[Person], function_call="Person")
prompt = ChatPromptTemplate.from_messages(
[
("system", "Use the provided Person function"),
("user", "{input}"),
]
)
chain = prompt | chat
message = HumanMessage(content="Sally is 13 years old")
response = await chain.abatch([{"input": message}])
assert isinstance(response, list)
assert len(response) == 1
for generation in response:
assert isinstance(generation, AIMessage)
def test_chat_openai_extra_kwargs() -> None:
"""Test extra kwargs to chat openai."""
# Check that foo is saved in extra_kwargs.
llm = ChatOpenAI(foo=3, max_tokens=10)
assert llm.max_tokens == 10
assert llm.model_kwargs == {"foo": 3}
# Test that if extra_kwargs are provided, they are added to it.
llm = ChatOpenAI(foo=3, model_kwargs={"bar": 2})
assert llm.model_kwargs == {"foo": 3, "bar": 2}
# Test that if provided twice it errors
with pytest.raises(ValueError):
ChatOpenAI(foo=3, model_kwargs={"foo": 2})
# Test that if explicit param is specified in kwargs it errors
with pytest.raises(ValueError):
ChatOpenAI(model_kwargs={"temperature": 0.2})
# Test that "model" cannot be specified in kwargs
with pytest.raises(ValueError):
ChatOpenAI(model_kwargs={"model": "gpt-3.5-turbo-instruct"})
@pytest.mark.scheduled
def test_openai_streaming() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI(max_tokens=10)
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_astream() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI(max_tokens=10)
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_abatch() -> None:
"""Test streaming tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_abatch_tags() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
def test_openai_batch() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_ainvoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
@pytest.mark.scheduled
def test_openai_invoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=10)
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
def test_stream() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI()
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_astream() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI()
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_abatch() -> None:
"""Test streaming tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
def test_batch() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
def test_invoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)

View File

@@ -0,0 +1,132 @@
"""Test azure openai embeddings."""
import os
from typing import Any
import numpy as np
import openai
import pytest
from langchain_openai import AzureOpenAIEmbeddings
OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "")
OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "")
OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "")
DEPLOYMENT_NAME = os.environ.get(
"AZURE_OPENAI_DEPLOYMENT_NAME",
os.environ.get("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME", ""),
)
print
def _get_embeddings(**kwargs: Any) -> AzureOpenAIEmbeddings:
return AzureOpenAIEmbeddings(
azure_deployment=DEPLOYMENT_NAME,
api_version=OPENAI_API_VERSION,
openai_api_base=OPENAI_API_BASE,
openai_api_key=OPENAI_API_KEY,
**kwargs,
)
@pytest.mark.scheduled
def test_azure_openai_embedding_documents() -> None:
"""Test openai embeddings."""
documents = ["foo bar"]
embedding = _get_embeddings()
output = embedding.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) == 1536
@pytest.mark.scheduled
def test_azure_openai_embedding_documents_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = _get_embeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = embedding.embed_documents(documents)
assert embedding.chunk_size == 2
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.scheduled
def test_azure_openai_embedding_documents_chunk_size() -> None:
"""Test openai embeddings."""
documents = ["foo bar"] * 20
embedding = _get_embeddings()
embedding.embedding_ctx_length = 8191
output = embedding.embed_documents(documents)
# Max 16 chunks per batch on Azure OpenAI embeddings
assert embedding.chunk_size == 16
assert len(output) == 20
assert all([len(out) == 1536 for out in output])
@pytest.mark.scheduled
async def test_azure_openai_embedding_documents_async_multiple() -> None:
"""Test openai embeddings."""
documents = ["foo bar", "bar foo", "foo"]
embedding = _get_embeddings(chunk_size=2)
embedding.embedding_ctx_length = 8191
output = await embedding.aembed_documents(documents)
assert len(output) == 3
assert len(output[0]) == 1536
assert len(output[1]) == 1536
assert len(output[2]) == 1536
@pytest.mark.scheduled
def test_azure_openai_embedding_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = _get_embeddings()
output = embedding.embed_query(document)
assert len(output) == 1536
@pytest.mark.scheduled
async def test_azure_openai_embedding_async_query() -> None:
"""Test openai embeddings."""
document = "foo bar"
embedding = _get_embeddings()
output = await embedding.aembed_query(document)
assert len(output) == 1536
@pytest.mark.scheduled
def test_azure_openai_embedding_with_empty_string() -> None:
"""Test openai embeddings with empty string."""
document = ["", "abc"]
embedding = _get_embeddings()
output = embedding.embed_documents(document)
assert len(output) == 2
assert len(output[0]) == 1536
expected_output = (
openai.AzureOpenAI(
api_version=OPENAI_API_VERSION,
api_key=OPENAI_API_KEY,
base_url=embedding.openai_api_base,
azure_deployment=DEPLOYMENT_NAME,
) # type: ignore
.embeddings.create(input="", model="text-embedding-ada-002")
.data[0]
.embedding
)
assert np.allclose(output[0], expected_output)
assert len(output[1]) == 1536
@pytest.mark.scheduled
def test_embed_documents_normalized() -> None:
output = _get_embeddings().embed_documents(["foo walked to the market"])
assert np.isclose(np.linalg.norm(output[0]), 1.0)
@pytest.mark.scheduled
def test_embed_query_normalized() -> None:
output = _get_embeddings().embed_query("foo walked to the market")
assert np.isclose(np.linalg.norm(output), 1.0)

View File

@@ -0,0 +1,19 @@
"""Test OpenAI embeddings."""
from langchain_openai.embeddings.base import OpenAIEmbeddings
def test_langchain_openai_embedding_documents() -> None:
"""Test cohere embeddings."""
documents = ["foo bar"]
embedding = OpenAIEmbeddings()
output = embedding.embed_documents(documents)
assert len(output) == 1
assert len(output[0]) > 0
def test_langchain_openai_embedding_query() -> None:
"""Test cohere embeddings."""
document = "foo bar"
embedding = OpenAIEmbeddings()
output = embedding.embed_query(document)
assert len(output) > 0

View File

@@ -0,0 +1,176 @@
"""Test AzureOpenAI wrapper."""
import os
from typing import Any, Generator
import pytest
from langchain_core.callbacks import CallbackManager
from langchain_core.outputs import LLMResult
from langchain_openai import AzureOpenAI
from tests.unit_tests.fake.callbacks import FakeCallbackHandler
OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "")
OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "")
OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "")
DEPLOYMENT_NAME = os.environ.get(
"AZURE_OPENAI_DEPLOYMENT_NAME",
os.environ.get("AZURE_OPENAI_LLM_DEPLOYMENT_NAME", ""),
)
def _get_llm(**kwargs: Any) -> AzureOpenAI:
return AzureOpenAI(
deployment_name=DEPLOYMENT_NAME,
openai_api_version=OPENAI_API_VERSION,
openai_api_base=OPENAI_API_BASE,
openai_api_key=OPENAI_API_KEY,
**kwargs,
)
@pytest.fixture
def llm() -> AzureOpenAI:
return _get_llm(
max_tokens=10,
)
@pytest.mark.scheduled
def test_openai_call(llm: AzureOpenAI) -> None:
"""Test valid call to openai."""
output = llm("Say something nice:")
assert isinstance(output, str)
@pytest.mark.scheduled
def test_openai_streaming(llm: AzureOpenAI) -> None:
"""Test streaming tokens from AzureOpenAI."""
generator = llm.stream("I'm Pickle Rick")
assert isinstance(generator, Generator)
full_response = ""
for token in generator:
assert isinstance(token, str)
full_response += token
assert full_response
@pytest.mark.scheduled
async def test_openai_astream(llm: AzureOpenAI) -> None:
"""Test streaming tokens from AzureOpenAI."""
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token, str)
@pytest.mark.scheduled
async def test_openai_abatch(llm: AzureOpenAI) -> None:
"""Test streaming tokens from AzureOpenAI."""
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
async def test_openai_abatch_tags(llm: AzureOpenAI) -> None:
"""Test streaming tokens from AzureOpenAI."""
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token, str)
@pytest.mark.scheduled
def test_openai_batch(llm: AzureOpenAI) -> None:
"""Test streaming tokens from AzureOpenAI."""
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
@pytest.mark.scheduled
async def test_openai_ainvoke(llm: AzureOpenAI) -> None:
"""Test streaming tokens from AzureOpenAI."""
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result, str)
@pytest.mark.scheduled
def test_openai_invoke(llm: AzureOpenAI) -> None:
"""Test streaming tokens from AzureOpenAI."""
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result, str)
@pytest.mark.scheduled
def test_openai_multiple_prompts(llm: AzureOpenAI) -> None:
"""Test completion with multiple prompts."""
output = llm.generate(["I'm Pickle Rick", "I'm Pickle Rick"])
assert isinstance(output, LLMResult)
assert isinstance(output.generations, list)
assert len(output.generations) == 2
def test_openai_streaming_best_of_error() -> None:
"""Test validation for streaming fails if best_of is not 1."""
with pytest.raises(ValueError):
_get_llm(best_of=2, streaming=True)
def test_openai_streaming_n_error() -> None:
"""Test validation for streaming fails if n is not 1."""
with pytest.raises(ValueError):
_get_llm(n=2, streaming=True)
def test_openai_streaming_multiple_prompts_error() -> None:
"""Test validation for streaming fails if multiple prompts are given."""
with pytest.raises(ValueError):
_get_llm(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"])
@pytest.mark.scheduled
def test_openai_streaming_call() -> None:
"""Test valid call to openai."""
llm = _get_llm(max_tokens=10, streaming=True)
output = llm("Say foo:")
assert isinstance(output, str)
def test_openai_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = _get_llm(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
llm("Write me a sentence with 100 words.")
assert callback_handler.llm_streams == 11
@pytest.mark.scheduled
async def test_openai_async_generate() -> None:
"""Test async generation."""
llm = _get_llm(max_tokens=10)
output = await llm.agenerate(["Hello, how are you?"])
assert isinstance(output, LLMResult)
async def test_openai_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = _get_llm(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
result = await llm.agenerate(["Write me a sentence with 100 words."])
assert callback_handler.llm_streams == 11
assert isinstance(result, LLMResult)

View File

@@ -0,0 +1,280 @@
"""Test OpenAI llm."""
from typing import Generator
import pytest
from langchain_core.callbacks import CallbackManager
from langchain_core.outputs import LLMResult
from langchain_openai import OpenAI
from tests.unit_tests.fake.callbacks import (
FakeCallbackHandler,
)
def test_stream() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI()
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token, str)
async def test_astream() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI()
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token, str)
async def test_abatch() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI()
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from OpenAI."""
llm = OpenAI()
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token, str)
def test_batch() -> None:
"""Test batch tokens from OpenAI."""
llm = OpenAI()
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from OpenAI."""
llm = OpenAI()
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result, str)
def test_invoke() -> None:
"""Test invoke tokens from OpenAI."""
llm = OpenAI()
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result, str)
@pytest.mark.scheduled
def test_openai_call() -> None:
"""Test valid call to openai."""
llm = OpenAI()
output = llm("Say something nice:")
assert isinstance(output, str)
def test_openai_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
llm = OpenAI(max_tokens=10)
llm_result = llm.generate(["Hello, how are you?"])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == llm.model_name
def test_openai_stop_valid() -> None:
"""Test openai stop logic on valid configuration."""
query = "write an ordered list of five items"
first_llm = OpenAI(stop="3", temperature=0)
first_output = first_llm(query)
second_llm = OpenAI(temperature=0)
second_output = second_llm(query, stop=["3"])
# Because it stops on new lines, shouldn't return anything
assert first_output == second_output
def test_openai_stop_error() -> None:
"""Test openai stop logic on bad configuration."""
llm = OpenAI(stop="3", temperature=0)
with pytest.raises(ValueError):
llm("write an ordered list of five items", stop=["\n"])
@pytest.mark.scheduled
def test_openai_streaming() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
generator = llm.stream("I'm Pickle Rick")
assert isinstance(generator, Generator)
for token in generator:
assert isinstance(token, str)
@pytest.mark.scheduled
async def test_openai_astream() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token, str)
@pytest.mark.scheduled
async def test_openai_abatch() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
async def test_openai_abatch_tags() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token, str)
@pytest.mark.scheduled
def test_openai_batch() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
@pytest.mark.scheduled
async def test_openai_ainvoke() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result, str)
@pytest.mark.scheduled
def test_openai_invoke() -> None:
"""Test streaming tokens from OpenAI."""
llm = OpenAI(max_tokens=10)
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result, str)
@pytest.mark.scheduled
def test_openai_multiple_prompts() -> None:
"""Test completion with multiple prompts."""
llm = OpenAI(max_tokens=10)
output = llm.generate(["I'm Pickle Rick", "I'm Pickle Rick"])
assert isinstance(output, LLMResult)
assert isinstance(output.generations, list)
assert len(output.generations) == 2
def test_openai_streaming_best_of_error() -> None:
"""Test validation for streaming fails if best_of is not 1."""
with pytest.raises(ValueError):
OpenAI(best_of=2, streaming=True)
def test_openai_streaming_n_error() -> None:
"""Test validation for streaming fails if n is not 1."""
with pytest.raises(ValueError):
OpenAI(n=2, streaming=True)
def test_openai_streaming_multiple_prompts_error() -> None:
"""Test validation for streaming fails if multiple prompts are given."""
with pytest.raises(ValueError):
OpenAI(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"])
@pytest.mark.scheduled
def test_openai_streaming_call() -> None:
"""Test valid call to openai."""
llm = OpenAI(max_tokens=10, streaming=True)
output = llm("Say foo:")
assert isinstance(output, str)
def test_openai_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
llm("Write me a sentence with 100 words.")
# new client sometimes passes 2 tokens at once
assert callback_handler.llm_streams >= 5
@pytest.mark.scheduled
async def test_openai_async_generate() -> None:
"""Test async generation."""
llm = OpenAI(max_tokens=10)
output = await llm.agenerate(["Hello, how are you?"])
assert isinstance(output, LLMResult)
async def test_openai_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(
max_tokens=10,
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
result = await llm.agenerate(["Write me a sentence with 100 words."])
# new client sometimes passes 2 tokens at once
assert callback_handler.llm_streams >= 5
assert isinstance(result, LLMResult)
def test_openai_modelname_to_contextsize_valid() -> None:
"""Test model name to context size on a valid model."""
assert OpenAI().modelname_to_contextsize("davinci") == 2049
def test_openai_modelname_to_contextsize_invalid() -> None:
"""Test model name to context size on an invalid model."""
with pytest.raises(ValueError):
OpenAI().modelname_to_contextsize("foobar")
@pytest.fixture
def mock_completion() -> dict:
return {
"id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ",
"object": "text_completion",
"created": 1689989000,
"model": "gpt-3.5-turbo-instruct",
"choices": [
{"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3},
}

View File

@@ -0,0 +1,7 @@
import pytest
@pytest.mark.compile
def test_placeholder() -> None:
"""Used for compiling integration tests without running any real tests."""
pass

View File

@@ -0,0 +1,120 @@
"""Test OpenAI Chat API wrapper."""
import json
from typing import Any
from unittest.mock import MagicMock, patch
import pytest
from langchain_core.messages import (
AIMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
from langchain_openai import ChatOpenAI
from langchain_openai.chat_models.base import _convert_dict_to_message
def test_openai_model_param() -> None:
llm = ChatOpenAI(model="foo")
assert llm.model_name == "foo"
llm = ChatOpenAI(model_name="foo")
assert llm.model_name == "foo"
def test_function_message_dict_to_function_message() -> None:
content = json.dumps({"result": "Example #1"})
name = "test_function"
result = _convert_dict_to_message(
{
"role": "function",
"name": name,
"content": content,
}
)
assert isinstance(result, FunctionMessage)
assert result.name == name
assert result.content == content
def test__convert_dict_to_message_human() -> None:
message = {"role": "user", "content": "foo"}
result = _convert_dict_to_message(message)
expected_output = HumanMessage(content="foo")
assert result == expected_output
def test__convert_dict_to_message_ai() -> None:
message = {"role": "assistant", "content": "foo"}
result = _convert_dict_to_message(message)
expected_output = AIMessage(content="foo")
assert result == expected_output
def test__convert_dict_to_message_system() -> None:
message = {"role": "system", "content": "foo"}
result = _convert_dict_to_message(message)
expected_output = SystemMessage(content="foo")
assert result == expected_output
@pytest.fixture
def mock_completion() -> dict:
return {
"id": "chatcmpl-7fcZavknQda3SQ",
"object": "chat.completion",
"created": 1689989000,
"model": "gpt-3.5-turbo-0613",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Bar Baz",
},
"finish_reason": "stop",
}
],
}
def test_openai_predict(mock_completion: dict) -> None:
llm = ChatOpenAI()
mock_client = MagicMock()
completed = False
def mock_create(*args: Any, **kwargs: Any) -> Any:
nonlocal completed
completed = True
return mock_completion
mock_client.create = mock_create
with patch.object(
llm,
"client",
mock_client,
):
res = llm.predict("bar")
assert res == "Bar Baz"
assert completed
async def test_openai_apredict(mock_completion: dict) -> None:
llm = ChatOpenAI()
mock_client = MagicMock()
completed = False
def mock_create(*args: Any, **kwargs: Any) -> Any:
nonlocal completed
completed = True
return mock_completion
mock_client.create = mock_create
with patch.object(
llm,
"client",
mock_client,
):
res = llm.predict("bar")
assert res == "Bar Baz"
assert completed

View File

@@ -0,0 +1,7 @@
from langchain_openai.chat_models import __all__
EXPECTED_ALL = ["ChatOpenAI", "AzureChatOpenAI"]
def test_all_imports() -> None:
assert sorted(EXPECTED_ALL) == sorted(__all__)

View File

@@ -0,0 +1,18 @@
import os
import pytest
from langchain_openai import OpenAIEmbeddings
os.environ["OPENAI_API_KEY"] = "foo"
def test_openai_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
OpenAIEmbeddings(model_kwargs={"model": "foo"})
def test_openai_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = OpenAIEmbeddings(foo="bar")
assert llm.model_kwargs == {"foo": "bar"}

View File

@@ -0,0 +1,7 @@
from langchain_openai.embeddings import __all__
EXPECTED_ALL = ["OpenAIEmbeddings", "AzureOpenAIEmbeddings"]
def test_all_imports() -> None:
assert sorted(EXPECTED_ALL) == sorted(__all__)

View File

@@ -0,0 +1,393 @@
"""A fake callback handler for testing purposes."""
from itertools import chain
from typing import Any, Dict, List, Optional, Union
from uuid import UUID
from langchain_core.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler
from langchain_core.messages import BaseMessage
from langchain_core.pydantic_v1 import BaseModel
class BaseFakeCallbackHandler(BaseModel):
"""Base fake callback handler for testing."""
starts: int = 0
ends: int = 0
errors: int = 0
errors_args: List[Any] = []
text: int = 0
ignore_llm_: bool = False
ignore_chain_: bool = False
ignore_agent_: bool = False
ignore_retriever_: bool = False
ignore_chat_model_: bool = False
# to allow for similar callback handlers that are not technicall equal
fake_id: Union[str, None] = None
# add finer-grained counters for easier debugging of failing tests
chain_starts: int = 0
chain_ends: int = 0
llm_starts: int = 0
llm_ends: int = 0
llm_streams: int = 0
tool_starts: int = 0
tool_ends: int = 0
agent_actions: int = 0
agent_ends: int = 0
chat_model_starts: int = 0
retriever_starts: int = 0
retriever_ends: int = 0
retriever_errors: int = 0
retries: int = 0
class BaseFakeCallbackHandlerMixin(BaseFakeCallbackHandler):
"""Base fake callback handler mixin for testing."""
def on_llm_start_common(self) -> None:
self.llm_starts += 1
self.starts += 1
def on_llm_end_common(self) -> None:
self.llm_ends += 1
self.ends += 1
def on_llm_error_common(self, *args: Any, **kwargs: Any) -> None:
self.errors += 1
self.errors_args.append({"args": args, "kwargs": kwargs})
def on_llm_new_token_common(self) -> None:
self.llm_streams += 1
def on_retry_common(self) -> None:
self.retries += 1
def on_chain_start_common(self) -> None:
self.chain_starts += 1
self.starts += 1
def on_chain_end_common(self) -> None:
self.chain_ends += 1
self.ends += 1
def on_chain_error_common(self) -> None:
self.errors += 1
def on_tool_start_common(self) -> None:
self.tool_starts += 1
self.starts += 1
def on_tool_end_common(self) -> None:
self.tool_ends += 1
self.ends += 1
def on_tool_error_common(self) -> None:
self.errors += 1
def on_agent_action_common(self) -> None:
self.agent_actions += 1
self.starts += 1
def on_agent_finish_common(self) -> None:
self.agent_ends += 1
self.ends += 1
def on_chat_model_start_common(self) -> None:
self.chat_model_starts += 1
self.starts += 1
def on_text_common(self) -> None:
self.text += 1
def on_retriever_start_common(self) -> None:
self.starts += 1
self.retriever_starts += 1
def on_retriever_end_common(self) -> None:
self.ends += 1
self.retriever_ends += 1
def on_retriever_error_common(self) -> None:
self.errors += 1
self.retriever_errors += 1
class FakeCallbackHandler(BaseCallbackHandler, BaseFakeCallbackHandlerMixin):
"""Fake callback handler for testing."""
@property
def ignore_llm(self) -> bool:
"""Whether to ignore LLM callbacks."""
return self.ignore_llm_
@property
def ignore_chain(self) -> bool:
"""Whether to ignore chain callbacks."""
return self.ignore_chain_
@property
def ignore_agent(self) -> bool:
"""Whether to ignore agent callbacks."""
return self.ignore_agent_
@property
def ignore_retriever(self) -> bool:
"""Whether to ignore retriever callbacks."""
return self.ignore_retriever_
def on_llm_start(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_llm_start_common()
def on_llm_new_token(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_llm_new_token_common()
def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_llm_end_common()
def on_llm_error(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_llm_error_common(*args, **kwargs)
def on_retry(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_retry_common()
def on_chain_start(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_chain_start_common()
def on_chain_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_chain_end_common()
def on_chain_error(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_chain_error_common()
def on_tool_start(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_tool_start_common()
def on_tool_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_tool_end_common()
def on_tool_error(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_tool_error_common()
def on_agent_action(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_agent_action_common()
def on_agent_finish(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_agent_finish_common()
def on_text(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_text_common()
def on_retriever_start(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_retriever_start_common()
def on_retriever_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_retriever_end_common()
def on_retriever_error(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_retriever_error_common()
def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler":
return self
class FakeCallbackHandlerWithChatStart(FakeCallbackHandler):
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
assert all(isinstance(m, BaseMessage) for m in chain(*messages))
self.on_chat_model_start_common()
class FakeAsyncCallbackHandler(AsyncCallbackHandler, BaseFakeCallbackHandlerMixin):
"""Fake async callback handler for testing."""
@property
def ignore_llm(self) -> bool:
"""Whether to ignore LLM callbacks."""
return self.ignore_llm_
@property
def ignore_chain(self) -> bool:
"""Whether to ignore chain callbacks."""
return self.ignore_chain_
@property
def ignore_agent(self) -> bool:
"""Whether to ignore agent callbacks."""
return self.ignore_agent_
async def on_retry(
self,
*args: Any,
**kwargs: Any,
) -> Any:
self.on_retry_common()
async def on_llm_start(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_llm_start_common()
async def on_llm_new_token(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_llm_new_token_common()
async def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_llm_end_common()
async def on_llm_error(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_llm_error_common(*args, **kwargs)
async def on_chain_start(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_chain_start_common()
async def on_chain_end(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_chain_end_common()
async def on_chain_error(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_chain_error_common()
async def on_tool_start(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_tool_start_common()
async def on_tool_end(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_tool_end_common()
async def on_tool_error(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_tool_error_common()
async def on_agent_action(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_agent_action_common()
async def on_agent_finish(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_agent_finish_common()
async def on_text(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.on_text_common()
def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler":
return self

View File

@@ -0,0 +1,48 @@
import os
import pytest
from langchain_openai import OpenAI
os.environ["OPENAI_API_KEY"] = "foo"
@pytest.mark.requires("openai")
def test_openai_model_param() -> None:
llm = OpenAI(model="foo")
assert llm.model_name == "foo"
llm = OpenAI(model_name="foo")
assert llm.model_name == "foo"
@pytest.mark.requires("openai")
def test_openai_model_kwargs() -> None:
llm = OpenAI(model_kwargs={"foo": "bar"})
assert llm.model_kwargs == {"foo": "bar"}
@pytest.mark.requires("openai")
def test_openai_invalid_model_kwargs() -> None:
with pytest.raises(ValueError):
OpenAI(model_kwargs={"model_name": "foo"})
@pytest.mark.requires("openai")
def test_openai_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = OpenAI(foo="bar")
assert llm.model_kwargs == {"foo": "bar"}
@pytest.fixture
def mock_completion() -> dict:
return {
"id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ",
"object": "text_completion",
"created": 1689989000,
"model": "text-davinci-003",
"choices": [
{"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3},
}

View File

@@ -0,0 +1,7 @@
from langchain_openai.llms import __all__
EXPECTED_ALL = ["OpenAI", "AzureOpenAI"]
def test_all_imports() -> None:
assert sorted(EXPECTED_ALL) == sorted(__all__)

View File

@@ -0,0 +1,14 @@
from langchain_openai import __all__
EXPECTED_ALL = [
"OpenAI",
"ChatOpenAI",
"OpenAIEmbeddings",
"AzureOpenAI",
"AzureChatOpenAI",
"AzureOpenAIEmbeddings",
]
def test_all_imports() -> None:
assert sorted(EXPECTED_ALL) == sorted(__all__)

View File

@@ -0,0 +1,39 @@
import pytest
from langchain_openai import ChatOpenAI, OpenAI
_EXPECTED_NUM_TOKENS = {
"ada": 17,
"babbage": 17,
"curie": 17,
"davinci": 17,
"gpt-4": 12,
"gpt-4-32k": 12,
"gpt-3.5-turbo": 12,
}
_MODELS = models = [
"ada",
"babbage",
"curie",
"davinci",
]
_CHAT_MODELS = [
"gpt-4",
"gpt-4-32k",
"gpt-3.5-turbo",
]
@pytest.mark.parametrize("model", _MODELS)
def test_openai_get_num_tokens(model: str) -> None:
"""Test get_tokens."""
llm = OpenAI(model=model)
assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model]
@pytest.mark.parametrize("model", _CHAT_MODELS)
def test_chat_openai_get_num_tokens(model: str) -> None:
"""Test get_tokens."""
llm = ChatOpenAI(model=model)
assert llm.get_num_tokens("表情符号是\n🦜🔗") == _EXPECTED_NUM_TOKENS[model]