mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-19 00:58:32 +00:00
Templates (#12294)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Lance Martin <lance@langchain.dev> Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
This commit is contained in:
3
templates/neo4j-cypher/neo4j_cypher/__init__.py
Normal file
3
templates/neo4j-cypher/neo4j_cypher/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from neo4j_cypher.chain import chain
|
||||
|
||||
__all__ = ["chain"]
|
72
templates/neo4j-cypher/neo4j_cypher/chain.py
Normal file
72
templates/neo4j-cypher/neo4j_cypher/chain.py
Normal file
@@ -0,0 +1,72 @@
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.graphs import Neo4jGraph
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnablePassthrough
|
||||
from langchain.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema
|
||||
|
||||
# Connection to Neo4j
|
||||
graph = Neo4jGraph()
|
||||
|
||||
# Cypher validation tool for relationship directions
|
||||
corrector_schema = [
|
||||
Schema(el["start"], el["type"], el["end"])
|
||||
for el in graph.structured_schema.get("relationships")
|
||||
]
|
||||
cypher_validation = CypherQueryCorrector(corrector_schema)
|
||||
|
||||
# LLMs
|
||||
cypher_llm = ChatOpenAI(model_name="gpt-4", temperature=0.0)
|
||||
qa_llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0)
|
||||
|
||||
# Generate Cypher statement based on natural language input
|
||||
cypher_template = """Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
|
||||
{schema}
|
||||
|
||||
Question: {question}
|
||||
Cypher query:"""
|
||||
|
||||
cypher_prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
(
|
||||
"system",
|
||||
"Given an input question, convert it to a Cypher query. No pre-amble.",
|
||||
),
|
||||
("human", cypher_template),
|
||||
]
|
||||
)
|
||||
|
||||
cypher_response = (
|
||||
RunnablePassthrough.assign(
|
||||
schema=lambda _: graph.get_schema,
|
||||
)
|
||||
| cypher_prompt
|
||||
| cypher_llm.bind(stop=["\nCypherResult:"])
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
# Generate natural language response based on database results
|
||||
response_template = """Based on the the question, Cypher query, and Cypher response, write a natural language response:
|
||||
Question: {question}
|
||||
Cypher query: {query}
|
||||
Cypher Response: {response}"""
|
||||
|
||||
response_prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
(
|
||||
"system",
|
||||
"Given an input question and Cypher response, convert it to a natural language answer. No pre-amble.",
|
||||
),
|
||||
("human", response_template),
|
||||
]
|
||||
)
|
||||
|
||||
chain = (
|
||||
RunnablePassthrough.assign(query=cypher_response)
|
||||
| RunnablePassthrough.assign(
|
||||
response=lambda x: graph.query(cypher_validation(x["query"])),
|
||||
)
|
||||
| response_prompt
|
||||
| qa_llm
|
||||
| StrOutputParser()
|
||||
)
|
Reference in New Issue
Block a user