mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-25 04:49:17 +00:00
Templates (#12294)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Lance Martin <lance@langchain.dev> Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
This commit is contained in:
48
templates/rag-chroma-private/rag_chroma_private/chain.py
Normal file
48
templates/rag-chroma-private/rag_chroma_private/chain.py
Normal file
@@ -0,0 +1,48 @@
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.chat_models import ChatOllama
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.embeddings import GPT4AllEmbeddings
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnablePassthrough, RunnableParallel
|
||||
|
||||
# Load
|
||||
from langchain.document_loaders import WebBaseLoader
|
||||
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
||||
data = loader.load()
|
||||
|
||||
# Split
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||||
all_splits = text_splitter.split_documents(data)
|
||||
|
||||
# Add to vectorDB
|
||||
vectorstore = Chroma.from_documents(documents=all_splits,
|
||||
collection_name="rag-private",
|
||||
embedding=GPT4AllEmbeddings(),
|
||||
)
|
||||
retriever = vectorstore.as_retriever()
|
||||
|
||||
# Prompt
|
||||
# Optionally, pull from the Hub
|
||||
# from langchain import hub
|
||||
# prompt = hub.pull("rlm/rag-prompt")
|
||||
# Or, define your own:
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
|
||||
Question: {question}
|
||||
"""
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
# LLM
|
||||
# Select the LLM that you downloaded
|
||||
ollama_llm = "llama2:13b-chat"
|
||||
model = ChatOllama(model=ollama_llm)
|
||||
|
||||
# RAG chain
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
Reference in New Issue
Block a user