Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
This commit is contained in:
Erick Friis
2023-10-25 18:47:42 -07:00
committed by GitHub
parent 43257a295c
commit ebf998acb6
242 changed files with 53432 additions and 31 deletions

View File

@@ -0,0 +1,3 @@
from llama2.chain import chain
__all__ = ["chain"]

View File

@@ -0,0 +1,73 @@
from langchain.llms import Replicate
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.prompts import ChatPromptTemplate
# make sure to set REPLICATE_API_TOKEN in your environment
# use llama-2-13b model in replicate
replicate_id = "meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d"
llm = Replicate(
model=replicate_id,
model_kwargs={"temperature": 0.01, "max_length": 500, "top_p": 1},
)
from pathlib import Path
from langchain.utilities import SQLDatabase
db_path = Path(__file__).parent / "nba_roster.db"
rel = db_path.relative_to(Path.cwd())
db_string = f"sqlite:///{rel}"
db = SQLDatabase.from_uri(db_string, sample_rows_in_table_info=0)
def get_schema(_):
return db.get_table_info()
def run_query(query):
return db.run(query)
template_query = """Based on the table schema below, write a SQL query that would answer the user's question:
{schema}
Question: {question}
SQL Query:"""
prompt = ChatPromptTemplate.from_messages(
[
("system", "Given an input question, convert it to a SQL query. No pre-amble."),
("human", template_query),
]
)
sql_response = (
RunnablePassthrough.assign(schema=get_schema)
| prompt
| llm.bind(stop=["\nSQLResult:"])
| StrOutputParser()
)
template_response = """Based on the table schema below, question, sql query, and sql response, write a natural language response:
{schema}
Question: {question}
SQL Query: {query}
SQL Response: {response}"""
prompt_response = ChatPromptTemplate.from_messages(
[
(
"system",
"Given an input question and SQL response, convert it to a natural language answer. No pre-amble.",
),
("human", template_response),
]
)
chain = (
RunnablePassthrough.assign(query=sql_response)
| RunnablePassthrough.assign(
schema=get_schema,
response=lambda x: db.run(x["query"]),
)
| prompt_response
| llm
)

Binary file not shown.