mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-02 11:39:18 +00:00
Templates (#12294)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Lance Martin <lance@langchain.dev> Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
This commit is contained in:
3
templates/sql-llamacpp/sql_llamacpp/__init__.py
Normal file
3
templates/sql-llamacpp/sql_llamacpp/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from llamacpp.chain import chain
|
||||
|
||||
__all__ = ["chain"]
|
106
templates/sql-llamacpp/sql_llamacpp/chain.py
Normal file
106
templates/sql-llamacpp/sql_llamacpp/chain.py
Normal file
@@ -0,0 +1,106 @@
|
||||
from langchain.llms import LlamaCpp
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnablePassthrough
|
||||
|
||||
# Get LLM
|
||||
import os
|
||||
import requests
|
||||
# File name and URL
|
||||
file_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
|
||||
url = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q4_K_M.gguf"
|
||||
# Check if file is present in the current directory
|
||||
if not os.path.exists(file_name):
|
||||
print(f"'{file_name}' not found. Downloading...")
|
||||
# Download the file
|
||||
response = requests.get(url)
|
||||
response.raise_for_status() # Raise an exception for HTTP errors
|
||||
with open(file_name, 'wb') as f:
|
||||
f.write(response.content)
|
||||
print(f"'{file_name}' has been downloaded.")
|
||||
else:
|
||||
print(f"'{file_name}' already exists in the current directory.")
|
||||
|
||||
# Add the LLM downloaded from HF
|
||||
model_path = file_name
|
||||
n_gpu_layers = 1 # Metal set to 1 is enough.
|
||||
n_batch = 512 # Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip.
|
||||
llm = LlamaCpp(
|
||||
model_path=model_path,
|
||||
n_gpu_layers=n_gpu_layers,
|
||||
n_batch=n_batch,
|
||||
n_ctx=2048,
|
||||
f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
from pathlib import Path
|
||||
from langchain.utilities import SQLDatabase
|
||||
db_path = Path(__file__).parent / "nba_roster.db"
|
||||
rel = db_path.relative_to(Path.cwd())
|
||||
db_string = f"sqlite:///{rel}"
|
||||
db = SQLDatabase.from_uri(db_string, sample_rows_in_table_info=0)
|
||||
|
||||
def get_schema(_):
|
||||
return db.get_table_info()
|
||||
|
||||
|
||||
def run_query(query):
|
||||
return db.run(query)
|
||||
|
||||
# Prompt
|
||||
from langchain.memory import ConversationBufferMemory
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
template = """Based on the table schema below, write a SQL query that would answer the user's question:
|
||||
{schema}
|
||||
|
||||
Question: {question}
|
||||
SQL Query:"""
|
||||
prompt = ChatPromptTemplate.from_messages([
|
||||
("system", "Given an input question, convert it to a SQL query. No pre-amble."),
|
||||
MessagesPlaceholder(variable_name="history"),
|
||||
("human", template)
|
||||
])
|
||||
|
||||
memory = ConversationBufferMemory(return_messages=True)
|
||||
|
||||
# Chain to query with memory
|
||||
from langchain.schema.runnable import RunnableLambda
|
||||
|
||||
sql_chain = (
|
||||
RunnablePassthrough.assign(
|
||||
schema=get_schema,
|
||||
history=RunnableLambda(lambda x: memory.load_memory_variables(x)["history"])
|
||||
)| prompt
|
||||
| llm.bind(stop=["\nSQLResult:"])
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
def save(input_output):
|
||||
output = {"output": input_output.pop("output")}
|
||||
memory.save_context(input_output, output)
|
||||
return output['output']
|
||||
|
||||
sql_response_memory = RunnablePassthrough.assign(output=sql_chain) | save
|
||||
|
||||
# Chain to answer
|
||||
template = """Based on the table schema below, question, sql query, and sql response, write a natural language response:
|
||||
{schema}
|
||||
|
||||
Question: {question}
|
||||
SQL Query: {query}
|
||||
SQL Response: {response}"""
|
||||
prompt_response = ChatPromptTemplate.from_messages([
|
||||
("system", "Given an input question and SQL response, convert it to a natural language answer. No pre-amble."),
|
||||
("human", template)
|
||||
])
|
||||
|
||||
chain = (
|
||||
RunnablePassthrough.assign(query=sql_response_memory)
|
||||
| RunnablePassthrough.assign(
|
||||
schema=get_schema,
|
||||
response=lambda x: db.run(x["query"]),
|
||||
)
|
||||
| prompt_response
|
||||
| llm
|
||||
)
|
BIN
templates/sql-llamacpp/sql_llamacpp/nba_roster.db
Normal file
BIN
templates/sql-llamacpp/sql_llamacpp/nba_roster.db
Normal file
Binary file not shown.
Reference in New Issue
Block a user