mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 21:43:44 +00:00
TEMPLATES Add rag-opensearch template (#13501)
<!-- Thank you for contributing to LangChain! Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes (if applicable), - **Dependencies:** any dependencies required for this change, - **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below), - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/extras` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. --> Adding rag-opensearch template. --------- Signed-off-by: kalyanr <kalyan.ben10@live.com> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
60
templates/rag-opensearch/rag_opensearch/chain.py
Normal file
60
templates/rag-opensearch/rag_opensearch/chain.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import os
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.vectorstores.opensearch_vector_search import OpenSearchVectorSearch
|
||||
|
||||
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
||||
OPENSEARCH_URL = os.getenv("OPENSEARCH_URL", "https://localhost:9200")
|
||||
OPENSEARCH_USERNAME = os.getenv("OPENSEARCH_USERNAME", "admin")
|
||||
OPENSEARCH_PASSWORD = os.getenv("OPENSEARCH_PASSWORD", "admin")
|
||||
OPENSEARCH_INDEX_NAME = os.getenv("OPENSEARCH_INDEX_NAME", "langchain-test")
|
||||
|
||||
|
||||
embedding_function = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
||||
|
||||
vector_store = OpenSearchVectorSearch(
|
||||
opensearch_url=OPENSEARCH_URL,
|
||||
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
|
||||
index_name=OPENSEARCH_INDEX_NAME,
|
||||
embedding_function=embedding_function,
|
||||
verify_certs=False,
|
||||
)
|
||||
|
||||
|
||||
retriever = vector_store.as_retriever()
|
||||
|
||||
|
||||
def format_docs(docs):
|
||||
return "\n\n".join([d.page_content for d in docs])
|
||||
|
||||
|
||||
# RAG prompt
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
Question: {question}
|
||||
"""
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
# RAG
|
||||
model = ChatOpenAI(openai_api_key=OPENAI_API_KEY)
|
||||
chain = (
|
||||
RunnableParallel(
|
||||
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
||||
)
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
|
||||
# Add typing for input
|
||||
class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
chain = chain.with_types(input_type=Question)
|
Reference in New Issue
Block a user