mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-28 17:38:36 +00:00
Fixed bug in AnalyticDB Vector Store caused by upgrade SQLAlchemy version (#6736)
This commit is contained in:
parent
d84a3bcf7a
commit
ec8247ec59
@ -80,34 +80,34 @@ class AnalyticDB(VectorStore):
|
||||
extend_existing=True,
|
||||
)
|
||||
with self.engine.connect() as conn:
|
||||
# Create the table
|
||||
Base.metadata.create_all(conn)
|
||||
with conn.begin():
|
||||
# Create the table
|
||||
Base.metadata.create_all(conn)
|
||||
|
||||
# Check if the index exists
|
||||
index_name = f"{self.collection_name}_embedding_idx"
|
||||
index_query = text(
|
||||
f"""
|
||||
SELECT 1
|
||||
FROM pg_indexes
|
||||
WHERE indexname = '{index_name}';
|
||||
"""
|
||||
)
|
||||
result = conn.execute(index_query).scalar()
|
||||
|
||||
# Create the index if it doesn't exist
|
||||
if not result:
|
||||
index_statement = text(
|
||||
# Check if the index exists
|
||||
index_name = f"{self.collection_name}_embedding_idx"
|
||||
index_query = text(
|
||||
f"""
|
||||
CREATE INDEX {index_name}
|
||||
ON {self.collection_name} USING ann(embedding)
|
||||
WITH (
|
||||
"dim" = {self.embedding_dimension},
|
||||
"hnsw_m" = 100
|
||||
);
|
||||
SELECT 1
|
||||
FROM pg_indexes
|
||||
WHERE indexname = '{index_name}';
|
||||
"""
|
||||
)
|
||||
conn.execute(index_statement)
|
||||
conn.commit()
|
||||
result = conn.execute(index_query).scalar()
|
||||
|
||||
# Create the index if it doesn't exist
|
||||
if not result:
|
||||
index_statement = text(
|
||||
f"""
|
||||
CREATE INDEX {index_name}
|
||||
ON {self.collection_name} USING ann(embedding)
|
||||
WITH (
|
||||
"dim" = {self.embedding_dimension},
|
||||
"hnsw_m" = 100
|
||||
);
|
||||
"""
|
||||
)
|
||||
conn.execute(index_statement)
|
||||
|
||||
def create_collection(self) -> None:
|
||||
if self.pre_delete_collection:
|
||||
@ -118,8 +118,8 @@ class AnalyticDB(VectorStore):
|
||||
self.logger.debug("Trying to delete collection")
|
||||
drop_statement = text(f"DROP TABLE IF EXISTS {self.collection_name};")
|
||||
with self.engine.connect() as conn:
|
||||
conn.execute(drop_statement)
|
||||
conn.commit()
|
||||
with conn.begin():
|
||||
conn.execute(drop_statement)
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
@ -160,30 +160,28 @@ class AnalyticDB(VectorStore):
|
||||
|
||||
chunks_table_data = []
|
||||
with self.engine.connect() as conn:
|
||||
for document, metadata, chunk_id, embedding in zip(
|
||||
texts, metadatas, ids, embeddings
|
||||
):
|
||||
chunks_table_data.append(
|
||||
{
|
||||
"id": chunk_id,
|
||||
"embedding": embedding,
|
||||
"document": document,
|
||||
"metadata": metadata,
|
||||
}
|
||||
)
|
||||
with conn.begin():
|
||||
for document, metadata, chunk_id, embedding in zip(
|
||||
texts, metadatas, ids, embeddings
|
||||
):
|
||||
chunks_table_data.append(
|
||||
{
|
||||
"id": chunk_id,
|
||||
"embedding": embedding,
|
||||
"document": document,
|
||||
"metadata": metadata,
|
||||
}
|
||||
)
|
||||
|
||||
# Execute the batch insert when the batch size is reached
|
||||
if len(chunks_table_data) == batch_size:
|
||||
# Execute the batch insert when the batch size is reached
|
||||
if len(chunks_table_data) == batch_size:
|
||||
conn.execute(insert(chunks_table).values(chunks_table_data))
|
||||
# Clear the chunks_table_data list for the next batch
|
||||
chunks_table_data.clear()
|
||||
|
||||
# Insert any remaining records that didn't make up a full batch
|
||||
if chunks_table_data:
|
||||
conn.execute(insert(chunks_table).values(chunks_table_data))
|
||||
# Clear the chunks_table_data list for the next batch
|
||||
chunks_table_data.clear()
|
||||
|
||||
# Insert any remaining records that didn't make up a full batch
|
||||
if chunks_table_data:
|
||||
conn.execute(insert(chunks_table).values(chunks_table_data))
|
||||
|
||||
# Commit the transaction only once after all records have been inserted
|
||||
conn.commit()
|
||||
|
||||
return ids
|
||||
|
||||
@ -333,9 +331,9 @@ class AnalyticDB(VectorStore):
|
||||
) -> AnalyticDB:
|
||||
"""
|
||||
Return VectorStore initialized from texts and embeddings.
|
||||
Postgres connection string is required
|
||||
Postgres Connection string is required
|
||||
Either pass it as a parameter
|
||||
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
||||
or set the PG_CONNECTION_STRING environment variable.
|
||||
"""
|
||||
|
||||
connection_string = cls.get_connection_string(kwargs)
|
||||
@ -363,7 +361,7 @@ class AnalyticDB(VectorStore):
|
||||
raise ValueError(
|
||||
"Postgres connection string is required"
|
||||
"Either pass it as a parameter"
|
||||
"or set the PGVECTOR_CONNECTION_STRING environment variable."
|
||||
"or set the PG_CONNECTION_STRING environment variable."
|
||||
)
|
||||
|
||||
return connection_string
|
||||
@ -381,9 +379,9 @@ class AnalyticDB(VectorStore):
|
||||
) -> AnalyticDB:
|
||||
"""
|
||||
Return VectorStore initialized from documents and embeddings.
|
||||
Postgres connection string is required
|
||||
Postgres Connection string is required
|
||||
Either pass it as a parameter
|
||||
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
||||
or set the PG_CONNECTION_STRING environment variable.
|
||||
"""
|
||||
|
||||
texts = [d.page_content for d in documents]
|
||||
|
Loading…
Reference in New Issue
Block a user