mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-31 00:29:57 +00:00
core[patch]: testing add chat model for unit-tests (#16209)
This PR adds a fake chat model for testing purposes. Used in this PR: https://github.com/langchain-ai/langchain/pull/16172
This commit is contained in:
parent
27ad65cc68
commit
ecd4f0a7ec
@ -1,15 +1,21 @@
|
||||
"""Fake ChatModel for testing purposes."""
|
||||
"""Fake Chat Model wrapper for testing purposes."""
|
||||
import asyncio
|
||||
import re
|
||||
import time
|
||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union
|
||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union, cast
|
||||
|
||||
from langchain_core.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models.chat_models import BaseChatModel, SimpleChatModel
|
||||
from langchain_core.messages import AIMessageChunk, BaseMessage
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.runnables import run_in_executor
|
||||
|
||||
|
||||
class FakeMessagesListChatModel(BaseChatModel):
|
||||
@ -114,3 +120,184 @@ class FakeListChatModel(SimpleChatModel):
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
return {"responses": self.responses}
|
||||
|
||||
|
||||
class FakeChatModel(SimpleChatModel):
|
||||
"""Fake Chat Model wrapper for testing purposes."""
|
||||
|
||||
def _call(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
return "fake response"
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
output_str = "fake response"
|
||||
message = AIMessage(content=output_str)
|
||||
generation = ChatGeneration(message=message)
|
||||
return ChatResult(generations=[generation])
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "fake-chat-model"
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
return {"key": "fake"}
|
||||
|
||||
|
||||
class GenericFakeChatModel(BaseChatModel):
|
||||
"""A generic fake chat model that can be used to test the chat model interface.
|
||||
|
||||
* Chat model should be usable in both sync and async tests
|
||||
* Invokes on_llm_new_token to allow for testing of callback related code for new
|
||||
tokens.
|
||||
* Includes logic to break messages into message chunk to facilitate testing of
|
||||
streaming.
|
||||
"""
|
||||
|
||||
messages: Iterator[AIMessage]
|
||||
"""Get an iterator over messages.
|
||||
|
||||
This can be expanded to accept other types like Callables / dicts / strings
|
||||
to make the interface more generic if needed.
|
||||
|
||||
Note: if you want to pass a list, you can use `iter` to convert it to an iterator.
|
||||
|
||||
Please note that streaming is not implemented yet. We should try to implement it
|
||||
in the future by delegating to invoke and then breaking the resulting output
|
||||
into message chunks.
|
||||
"""
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
"""Top Level call"""
|
||||
message = next(self.messages)
|
||||
generation = ChatGeneration(message=message)
|
||||
return ChatResult(generations=[generation])
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
"""Stream the output of the model."""
|
||||
chat_result = self._generate(
|
||||
messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
if not isinstance(chat_result, ChatResult):
|
||||
raise ValueError(
|
||||
f"Expected generate to return a ChatResult, "
|
||||
f"but got {type(chat_result)} instead."
|
||||
)
|
||||
|
||||
message = chat_result.generations[0].message
|
||||
|
||||
if not isinstance(message, AIMessage):
|
||||
raise ValueError(
|
||||
f"Expected invoke to return an AIMessage, "
|
||||
f"but got {type(message)} instead."
|
||||
)
|
||||
|
||||
content = message.content
|
||||
|
||||
if content:
|
||||
# Use a regular expression to split on whitespace with a capture group
|
||||
# so that we can preserve the whitespace in the output.
|
||||
assert isinstance(content, str)
|
||||
content_chunks = cast(List[str], re.split(r"(\s)", content))
|
||||
|
||||
for token in content_chunks:
|
||||
chunk = ChatGenerationChunk(message=AIMessageChunk(content=token))
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
if message.additional_kwargs:
|
||||
for key, value in message.additional_kwargs.items():
|
||||
# We should further break down the additional kwargs into chunks
|
||||
# Special case for function call
|
||||
if key == "function_call":
|
||||
for fkey, fvalue in value.items():
|
||||
if isinstance(fvalue, str):
|
||||
# Break function call by `,`
|
||||
fvalue_chunks = cast(List[str], re.split(r"(,)", fvalue))
|
||||
for fvalue_chunk in fvalue_chunks:
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(
|
||||
content="",
|
||||
additional_kwargs={
|
||||
"function_call": {fkey: fvalue_chunk}
|
||||
},
|
||||
)
|
||||
)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(
|
||||
"",
|
||||
chunk=chunk, # No token for function call
|
||||
)
|
||||
else:
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(
|
||||
content="",
|
||||
additional_kwargs={"function_call": {fkey: fvalue}},
|
||||
)
|
||||
)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(
|
||||
"",
|
||||
chunk=chunk, # No token for function call
|
||||
)
|
||||
else:
|
||||
chunk = ChatGenerationChunk(
|
||||
message=AIMessageChunk(
|
||||
content="", additional_kwargs={key: value}
|
||||
)
|
||||
)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(
|
||||
"",
|
||||
chunk=chunk, # No token for function call
|
||||
)
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[ChatGenerationChunk]:
|
||||
"""Stream the output of the model."""
|
||||
result = await run_in_executor(
|
||||
None,
|
||||
self._stream,
|
||||
messages,
|
||||
stop=stop,
|
||||
run_manager=run_manager.get_sync() if run_manager else None,
|
||||
**kwargs,
|
||||
)
|
||||
for chunk in result:
|
||||
yield chunk
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "generic-fake-chat-model"
|
||||
|
184
libs/core/tests/unit_tests/fake/test_fake_chat_model.py
Normal file
184
libs/core/tests/unit_tests/fake/test_fake_chat_model.py
Normal file
@ -0,0 +1,184 @@
|
||||
"""Tests for verifying that testing utility code works as expected."""
|
||||
from itertools import cycle
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from uuid import UUID
|
||||
|
||||
from langchain_core.callbacks.base import AsyncCallbackHandler
|
||||
from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage
|
||||
from langchain_core.outputs import ChatGenerationChunk, GenerationChunk
|
||||
from tests.unit_tests.fake.chat_model import GenericFakeChatModel
|
||||
|
||||
|
||||
def test_generic_fake_chat_model_invoke() -> None:
|
||||
# Will alternate between responding with hello and goodbye
|
||||
infinite_cycle = cycle([AIMessage(content="hello"), AIMessage(content="goodbye")])
|
||||
model = GenericFakeChatModel(messages=infinite_cycle)
|
||||
response = model.invoke("meow")
|
||||
assert response == AIMessage(content="hello")
|
||||
response = model.invoke("kitty")
|
||||
assert response == AIMessage(content="goodbye")
|
||||
response = model.invoke("meow")
|
||||
assert response == AIMessage(content="hello")
|
||||
|
||||
|
||||
async def test_generic_fake_chat_model_ainvoke() -> None:
|
||||
# Will alternate between responding with hello and goodbye
|
||||
infinite_cycle = cycle([AIMessage(content="hello"), AIMessage(content="goodbye")])
|
||||
model = GenericFakeChatModel(messages=infinite_cycle)
|
||||
response = await model.ainvoke("meow")
|
||||
assert response == AIMessage(content="hello")
|
||||
response = await model.ainvoke("kitty")
|
||||
assert response == AIMessage(content="goodbye")
|
||||
response = await model.ainvoke("meow")
|
||||
assert response == AIMessage(content="hello")
|
||||
|
||||
|
||||
async def test_generic_fake_chat_model_stream() -> None:
|
||||
"""Test streaming."""
|
||||
infinite_cycle = cycle(
|
||||
[
|
||||
AIMessage(content="hello goodbye"),
|
||||
]
|
||||
)
|
||||
model = GenericFakeChatModel(messages=infinite_cycle)
|
||||
chunks = [chunk async for chunk in model.astream("meow")]
|
||||
assert chunks == [
|
||||
AIMessageChunk(content="hello"),
|
||||
AIMessageChunk(content=" "),
|
||||
AIMessageChunk(content="goodbye"),
|
||||
]
|
||||
|
||||
chunks = [chunk for chunk in model.stream("meow")]
|
||||
assert chunks == [
|
||||
AIMessageChunk(content="hello"),
|
||||
AIMessageChunk(content=" "),
|
||||
AIMessageChunk(content="goodbye"),
|
||||
]
|
||||
|
||||
# Test streaming of additional kwargs.
|
||||
# Relying on insertion order of the additional kwargs dict
|
||||
message = AIMessage(content="", additional_kwargs={"foo": 42, "bar": 24})
|
||||
model = GenericFakeChatModel(messages=cycle([message]))
|
||||
chunks = [chunk async for chunk in model.astream("meow")]
|
||||
assert chunks == [
|
||||
AIMessageChunk(content="", additional_kwargs={"foo": 42}),
|
||||
AIMessageChunk(content="", additional_kwargs={"bar": 24}),
|
||||
]
|
||||
|
||||
message = AIMessage(
|
||||
content="",
|
||||
additional_kwargs={
|
||||
"function_call": {
|
||||
"name": "move_file",
|
||||
"arguments": '{\n "source_path": "foo",\n "'
|
||||
'destination_path": "bar"\n}',
|
||||
}
|
||||
},
|
||||
)
|
||||
model = GenericFakeChatModel(messages=cycle([message]))
|
||||
chunks = [chunk async for chunk in model.astream("meow")]
|
||||
|
||||
assert chunks == [
|
||||
AIMessageChunk(
|
||||
content="", additional_kwargs={"function_call": {"name": "move_file"}}
|
||||
),
|
||||
AIMessageChunk(
|
||||
content="",
|
||||
additional_kwargs={
|
||||
"function_call": {"arguments": '{\n "source_path": "foo"'}
|
||||
},
|
||||
),
|
||||
AIMessageChunk(
|
||||
content="", additional_kwargs={"function_call": {"arguments": ","}}
|
||||
),
|
||||
AIMessageChunk(
|
||||
content="",
|
||||
additional_kwargs={
|
||||
"function_call": {"arguments": '\n "destination_path": "bar"\n}'}
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
accumulate_chunks = None
|
||||
for chunk in chunks:
|
||||
if accumulate_chunks is None:
|
||||
accumulate_chunks = chunk
|
||||
else:
|
||||
accumulate_chunks += chunk
|
||||
|
||||
assert accumulate_chunks == AIMessageChunk(
|
||||
content="",
|
||||
additional_kwargs={
|
||||
"function_call": {
|
||||
"name": "move_file",
|
||||
"arguments": '{\n "source_path": "foo",\n "'
|
||||
'destination_path": "bar"\n}',
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
async def test_generic_fake_chat_model_astream_log() -> None:
|
||||
"""Test streaming."""
|
||||
infinite_cycle = cycle([AIMessage(content="hello goodbye")])
|
||||
model = GenericFakeChatModel(messages=infinite_cycle)
|
||||
log_patches = [
|
||||
log_patch async for log_patch in model.astream_log("meow", diff=False)
|
||||
]
|
||||
final = log_patches[-1]
|
||||
assert final.state["streamed_output"] == [
|
||||
AIMessageChunk(content="hello"),
|
||||
AIMessageChunk(content=" "),
|
||||
AIMessageChunk(content="goodbye"),
|
||||
]
|
||||
|
||||
|
||||
async def test_callback_handlers() -> None:
|
||||
"""Verify that model is implemented correctly with handlers working."""
|
||||
|
||||
class MyCustomAsyncHandler(AsyncCallbackHandler):
|
||||
def __init__(self, store: List[str]) -> None:
|
||||
self.store = store
|
||||
|
||||
async def on_chat_model_start(
|
||||
self,
|
||||
serialized: Dict[str, Any],
|
||||
messages: List[List[BaseMessage]],
|
||||
*,
|
||||
run_id: UUID,
|
||||
parent_run_id: Optional[UUID] = None,
|
||||
tags: Optional[List[str]] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
# Do nothing
|
||||
# Required to implement since this is an abstract method
|
||||
pass
|
||||
|
||||
async def on_llm_new_token(
|
||||
self,
|
||||
token: str,
|
||||
*,
|
||||
chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None,
|
||||
run_id: UUID,
|
||||
parent_run_id: Optional[UUID] = None,
|
||||
tags: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
self.store.append(token)
|
||||
|
||||
infinite_cycle = cycle(
|
||||
[
|
||||
AIMessage(content="hello goodbye"),
|
||||
]
|
||||
)
|
||||
model = GenericFakeChatModel(messages=infinite_cycle)
|
||||
tokens: List[str] = []
|
||||
# New model
|
||||
results = list(model.stream("meow", {"callbacks": [MyCustomAsyncHandler(tokens)]}))
|
||||
assert results == [
|
||||
AIMessageChunk(content="hello"),
|
||||
AIMessageChunk(content=" "),
|
||||
AIMessageChunk(content="goodbye"),
|
||||
]
|
||||
assert tokens == ["hello", " ", "goodbye"]
|
Loading…
Reference in New Issue
Block a user