mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-19 13:23:35 +00:00
tests[patch]: run standard tests for embeddings and populate embeddings API ref (#28545)
plus minor updates to chat models and vector store API refs
This commit is contained in:
parent
1581857e3d
commit
ecdfc98ef6
@ -75,29 +75,30 @@ def _validate_tool_call_message_no_args(message: BaseMessage) -> None:
|
|||||||
class ChatModelIntegrationTests(ChatModelTests):
|
class ChatModelIntegrationTests(ChatModelTests):
|
||||||
"""Base class for chat model integration tests.
|
"""Base class for chat model integration tests.
|
||||||
|
|
||||||
Test subclasses must implement the following two properties:
|
Test subclasses must implement the ``chat_model_class`` and
|
||||||
|
``chat_model_params`` properties to specify what model to test and its
|
||||||
|
initialization parameters.
|
||||||
|
|
||||||
chat_model_class
|
Example:
|
||||||
The chat model class to test, e.g., ``ChatParrotLink``.
|
|
||||||
|
|
||||||
Example:
|
.. code-block:: python
|
||||||
|
|
||||||
.. code-block:: python
|
from typing import Type
|
||||||
|
|
||||||
|
from langchain_tests.integration_tests import ChatModelIntegrationTests
|
||||||
|
from my_package.chat_models import MyChatModel
|
||||||
|
|
||||||
|
|
||||||
|
class TestMyChatModelIntegration(ChatModelIntegrationTests):
|
||||||
@property
|
@property
|
||||||
def chat_model_class(self) -> Type[ChatParrotLink]:
|
def chat_model_class(self) -> Type[MyChatModel]:
|
||||||
return ChatParrotLink
|
# Return the chat model class to test here
|
||||||
|
return MyChatModel
|
||||||
chat_model_params
|
|
||||||
Initialization parameters for the chat model.
|
|
||||||
|
|
||||||
Example:
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def chat_model_params(self) -> dict:
|
def chat_model_params(self) -> dict:
|
||||||
return {"model": "bird-brain-001", "temperature": 0}
|
# Return initialization parameters for the model.
|
||||||
|
return {"model": "model-001", "temperature": 0}
|
||||||
|
|
||||||
.. note::
|
.. note::
|
||||||
API references for individual test methods include troubleshooting tips.
|
API references for individual test methods include troubleshooting tips.
|
||||||
|
@ -6,7 +6,47 @@ from langchain_tests.unit_tests.embeddings import EmbeddingsTests
|
|||||||
|
|
||||||
|
|
||||||
class EmbeddingsIntegrationTests(EmbeddingsTests):
|
class EmbeddingsIntegrationTests(EmbeddingsTests):
|
||||||
|
"""Base class for embeddings integration tests.
|
||||||
|
|
||||||
|
Test subclasses must implement the ``embeddings_class`` property to specify the
|
||||||
|
embeddings model to be tested. You can also override the
|
||||||
|
``embedding_model_params`` property to specify initialization parameters.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from typing import Type
|
||||||
|
|
||||||
|
from langchain_tests.integration_tests import EmbeddingsIntegrationTests
|
||||||
|
from my_package.embeddings import MyEmbeddingsModel
|
||||||
|
|
||||||
|
|
||||||
|
class TestMyEmbeddingsModelIntegration(EmbeddingsIntegrationTests):
|
||||||
|
@property
|
||||||
|
def embeddings_class(self) -> Type[MyEmbeddingsModel]:
|
||||||
|
# Return the embeddings model class to test here
|
||||||
|
return MyEmbeddingsModel
|
||||||
|
|
||||||
|
@property
|
||||||
|
def embedding_model_params(self) -> dict:
|
||||||
|
# Return initialization parameters for the model.
|
||||||
|
return {"model": "model-001"}
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
API references for individual test methods include troubleshooting tips.
|
||||||
|
"""
|
||||||
|
|
||||||
def test_embed_query(self, model: Embeddings) -> None:
|
def test_embed_query(self, model: Embeddings) -> None:
|
||||||
|
"""Test embedding a string query.
|
||||||
|
|
||||||
|
.. dropdown:: Troubleshooting
|
||||||
|
|
||||||
|
If this test fails, check that:
|
||||||
|
|
||||||
|
1. The model will generate a list of floats when calling ``.embed_query`` on a string.
|
||||||
|
2. The length of the list is consistent across different inputs.
|
||||||
|
""" # noqa: E501
|
||||||
embedding_1 = model.embed_query("foo")
|
embedding_1 = model.embed_query("foo")
|
||||||
|
|
||||||
assert isinstance(embedding_1, List)
|
assert isinstance(embedding_1, List)
|
||||||
@ -18,6 +58,15 @@ class EmbeddingsIntegrationTests(EmbeddingsTests):
|
|||||||
assert len(embedding_1) == len(embedding_2)
|
assert len(embedding_1) == len(embedding_2)
|
||||||
|
|
||||||
def test_embed_documents(self, model: Embeddings) -> None:
|
def test_embed_documents(self, model: Embeddings) -> None:
|
||||||
|
"""Test embedding a list of strings.
|
||||||
|
|
||||||
|
.. dropdown:: Troubleshooting
|
||||||
|
|
||||||
|
If this test fails, check that:
|
||||||
|
|
||||||
|
1. The model will generate a list of lists of floats when calling ``.embed_documents`` on a list of strings.
|
||||||
|
2. The length of each list is the same.
|
||||||
|
""" # noqa: E501
|
||||||
documents = ["foo", "bar", "baz"]
|
documents = ["foo", "bar", "baz"]
|
||||||
embeddings = model.embed_documents(documents)
|
embeddings = model.embed_documents(documents)
|
||||||
|
|
||||||
@ -28,6 +77,15 @@ class EmbeddingsIntegrationTests(EmbeddingsTests):
|
|||||||
assert all(len(embedding) == len(embeddings[0]) for embedding in embeddings)
|
assert all(len(embedding) == len(embeddings[0]) for embedding in embeddings)
|
||||||
|
|
||||||
async def test_aembed_query(self, model: Embeddings) -> None:
|
async def test_aembed_query(self, model: Embeddings) -> None:
|
||||||
|
"""Test embedding a string query async.
|
||||||
|
|
||||||
|
.. dropdown:: Troubleshooting
|
||||||
|
|
||||||
|
If this test fails, check that:
|
||||||
|
|
||||||
|
1. The model will generate a list of floats when calling ``.aembed_query`` on a string.
|
||||||
|
2. The length of the list is consistent across different inputs.
|
||||||
|
""" # noqa: E501
|
||||||
embedding_1 = await model.aembed_query("foo")
|
embedding_1 = await model.aembed_query("foo")
|
||||||
|
|
||||||
assert isinstance(embedding_1, List)
|
assert isinstance(embedding_1, List)
|
||||||
@ -39,6 +97,15 @@ class EmbeddingsIntegrationTests(EmbeddingsTests):
|
|||||||
assert len(embedding_1) == len(embedding_2)
|
assert len(embedding_1) == len(embedding_2)
|
||||||
|
|
||||||
async def test_aembed_documents(self, model: Embeddings) -> None:
|
async def test_aembed_documents(self, model: Embeddings) -> None:
|
||||||
|
"""Test embedding a list of strings async.
|
||||||
|
|
||||||
|
.. dropdown:: Troubleshooting
|
||||||
|
|
||||||
|
If this test fails, check that:
|
||||||
|
|
||||||
|
1. The model will generate a list of lists of floats when calling ``.aembed_documents`` on a list of strings.
|
||||||
|
2. The length of each list is the same.
|
||||||
|
""" # noqa: E501
|
||||||
documents = ["foo", "bar", "baz"]
|
documents = ["foo", "bar", "baz"]
|
||||||
embeddings = await model.aembed_documents(documents)
|
embeddings = await model.aembed_documents(documents)
|
||||||
|
|
||||||
|
@ -76,6 +76,8 @@ class ReadWriteTestSuite(BaseStandardTests):
|
|||||||
store.delete_collection()
|
store.delete_collection()
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
API references for individual test methods include troubleshooting tips.
|
||||||
""" # noqa: E501
|
""" # noqa: E501
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
@ -445,6 +447,8 @@ class AsyncReadWriteTestSuite(BaseStandardTests):
|
|||||||
store.delete_collection()
|
store.delete_collection()
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
API references for individual test methods include troubleshooting tips.
|
||||||
""" # noqa: E501
|
""" # noqa: E501
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
|
@ -380,29 +380,30 @@ class ChatModelTests(BaseStandardTests):
|
|||||||
class ChatModelUnitTests(ChatModelTests):
|
class ChatModelUnitTests(ChatModelTests):
|
||||||
"""Base class for chat model unit tests.
|
"""Base class for chat model unit tests.
|
||||||
|
|
||||||
Test subclasses must implement the following two properties:
|
Test subclasses must implement the ``chat_model_class`` and
|
||||||
|
``chat_model_params`` properties to specify what model to test and its
|
||||||
|
initialization parameters.
|
||||||
|
|
||||||
chat_model_class
|
Example:
|
||||||
The chat model class to test, e.g., ``ChatParrotLink``.
|
|
||||||
|
|
||||||
Example:
|
.. code-block:: python
|
||||||
|
|
||||||
.. code-block:: python
|
from typing import Type
|
||||||
|
|
||||||
|
from langchain_tests.unit_tests import ChatModelUnitTests
|
||||||
|
from my_package.chat_models import MyChatModel
|
||||||
|
|
||||||
|
|
||||||
|
class TestMyChatModelUnit(ChatModelUnitTests):
|
||||||
@property
|
@property
|
||||||
def chat_model_class(self) -> Type[ChatParrotLink]:
|
def chat_model_class(self) -> Type[MyChatModel]:
|
||||||
return ChatParrotLink
|
# Return the chat model class to test here
|
||||||
|
return MyChatModel
|
||||||
chat_model_params
|
|
||||||
Initialization parameters for the chat model.
|
|
||||||
|
|
||||||
Example:
|
|
||||||
|
|
||||||
.. code-block:: python
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def chat_model_params(self) -> dict:
|
def chat_model_params(self) -> dict:
|
||||||
return {"model": "bird-brain-001", "temperature": 0}
|
# Return initialization parameters for the model.
|
||||||
|
return {"model": "model-001", "temperature": 0}
|
||||||
|
|
||||||
.. note::
|
.. note::
|
||||||
API references for individual test methods include troubleshooting tips.
|
API references for individual test methods include troubleshooting tips.
|
||||||
@ -486,7 +487,8 @@ class ChatModelUnitTests(ChatModelTests):
|
|||||||
.. dropdown:: Troubleshooting
|
.. dropdown:: Troubleshooting
|
||||||
|
|
||||||
If this test fails, ensure that ``init_from_env_params`` is specified
|
If this test fails, ensure that ``init_from_env_params`` is specified
|
||||||
correctly.
|
correctly and that model parameters are properly set from environment
|
||||||
|
variables during initialization.
|
||||||
"""
|
"""
|
||||||
env_params, model_params, expected_attrs = self.init_from_env_params
|
env_params, model_params, expected_attrs = self.init_from_env_params
|
||||||
if not env_params:
|
if not env_params:
|
||||||
|
@ -25,17 +25,98 @@ class EmbeddingsTests(BaseStandardTests):
|
|||||||
|
|
||||||
|
|
||||||
class EmbeddingsUnitTests(EmbeddingsTests):
|
class EmbeddingsUnitTests(EmbeddingsTests):
|
||||||
|
"""Base class for embeddings unit tests.
|
||||||
|
|
||||||
|
Test subclasses must implement the ``embeddings_class`` property to specify the
|
||||||
|
embeddings model to be tested. You can also override the
|
||||||
|
``embedding_model_params`` property to specify initialization parameters.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from typing import Type
|
||||||
|
|
||||||
|
from langchain_tests.unit_tests import EmbeddingsUnitTests
|
||||||
|
from my_package.embeddings import MyEmbeddingsModel
|
||||||
|
|
||||||
|
|
||||||
|
class TestMyEmbeddingsModelUnit(EmbeddingsUnitTests):
|
||||||
|
@property
|
||||||
|
def embeddings_class(self) -> Type[MyEmbeddingsModel]:
|
||||||
|
# Return the embeddings model class to test here
|
||||||
|
return MyEmbeddingsModel
|
||||||
|
|
||||||
|
@property
|
||||||
|
def embedding_model_params(self) -> dict:
|
||||||
|
# Return initialization parameters for the model.
|
||||||
|
return {"model": "model-001"}
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
API references for individual test methods include troubleshooting tips.
|
||||||
|
|
||||||
|
Testing initialization from environment variables
|
||||||
|
Overriding the ``init_from_env_params`` property will enable additional tests
|
||||||
|
for initialization from environment variables. See below for details.
|
||||||
|
|
||||||
|
.. dropdown:: init_from_env_params
|
||||||
|
|
||||||
|
This property is used in unit tests to test initialization from
|
||||||
|
environment variables. It should return a tuple of three dictionaries
|
||||||
|
that specify the environment variables, additional initialization args,
|
||||||
|
and expected instance attributes to check.
|
||||||
|
|
||||||
|
Defaults to empty dicts. If not overridden, the test is skipped.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
@property
|
||||||
|
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
|
||||||
|
return (
|
||||||
|
{
|
||||||
|
"MY_API_KEY": "api_key",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model": "model-001",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"my_api_key": "api_key",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
""" # noqa: E501
|
||||||
|
|
||||||
def test_init(self) -> None:
|
def test_init(self) -> None:
|
||||||
|
"""Test model initialization.
|
||||||
|
|
||||||
|
.. dropdown:: Troubleshooting
|
||||||
|
|
||||||
|
If this test fails, ensure that ``embedding_model_params`` is specified
|
||||||
|
and the model can be initialized from those params.
|
||||||
|
"""
|
||||||
model = self.embeddings_class(**self.embedding_model_params)
|
model = self.embeddings_class(**self.embedding_model_params)
|
||||||
assert model is not None
|
assert model is not None
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
|
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
|
||||||
"""Return env vars, init args, and expected instance attrs for initializing
|
"""This property is used in unit tests to test initialization from environment
|
||||||
from env vars."""
|
variables. It should return a tuple of three dictionaries that specify the
|
||||||
|
environment variables, additional initialization args, and expected instance
|
||||||
|
attributes to check."""
|
||||||
return {}, {}, {}
|
return {}, {}, {}
|
||||||
|
|
||||||
def test_init_from_env(self) -> None:
|
def test_init_from_env(self) -> None:
|
||||||
|
"""Test initialization from environment variables. Relies on the
|
||||||
|
``init_from_env_params`` property. Test is skipped if that property is not
|
||||||
|
set.
|
||||||
|
|
||||||
|
.. dropdown:: Troubleshooting
|
||||||
|
|
||||||
|
If this test fails, ensure that ``init_from_env_params`` is specified
|
||||||
|
correctly and that model parameters are properly set from environment
|
||||||
|
variables during initialization.
|
||||||
|
"""
|
||||||
env_params, embeddings_params, expected_attrs = self.init_from_env_params
|
env_params, embeddings_params, expected_attrs = self.init_from_env_params
|
||||||
if env_params:
|
if env_params:
|
||||||
with mock.patch.dict(os.environ, env_params):
|
with mock.patch.dict(os.environ, env_params):
|
||||||
|
26
libs/standard-tests/tests/unit_tests/test_embeddings.py
Normal file
26
libs/standard-tests/tests/unit_tests/test_embeddings.py
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
from typing import Type
|
||||||
|
|
||||||
|
from langchain_core.embeddings import DeterministicFakeEmbedding, Embeddings
|
||||||
|
|
||||||
|
from langchain_tests.integration_tests import EmbeddingsIntegrationTests
|
||||||
|
from langchain_tests.unit_tests import EmbeddingsUnitTests
|
||||||
|
|
||||||
|
|
||||||
|
class TestFakeEmbeddingsUnit(EmbeddingsUnitTests):
|
||||||
|
@property
|
||||||
|
def embeddings_class(self) -> Type[Embeddings]:
|
||||||
|
return DeterministicFakeEmbedding
|
||||||
|
|
||||||
|
@property
|
||||||
|
def embedding_model_params(self) -> dict:
|
||||||
|
return {"size": 6} # embedding dimension
|
||||||
|
|
||||||
|
|
||||||
|
class TestFakeEmbeddingsIntegration(EmbeddingsIntegrationTests):
|
||||||
|
@property
|
||||||
|
def embeddings_class(self) -> Type[Embeddings]:
|
||||||
|
return DeterministicFakeEmbedding
|
||||||
|
|
||||||
|
@property
|
||||||
|
def embedding_model_params(self) -> dict:
|
||||||
|
return {"size": 6}
|
Loading…
Reference in New Issue
Block a user