mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-07 14:03:26 +00:00
templates: Add neo4j semantic layer with ollama template (#17192)
A template with JSON-based agent using Mixtral via Ollama. --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
110
templates/neo4j-semantic-ollama/neo4j_semantic_ollama/agent.py
Normal file
110
templates/neo4j-semantic-ollama/neo4j_semantic_ollama/agent.py
Normal file
@@ -0,0 +1,110 @@
|
||||
import os
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.format_scratchpad import format_log_to_messages
|
||||
from langchain.agents.output_parsers import (
|
||||
ReActJsonSingleInputOutputParser,
|
||||
)
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain.schema import AIMessage, HumanMessage
|
||||
from langchain.tools.render import render_text_description_and_args
|
||||
from langchain_community.chat_models import ChatOllama
|
||||
|
||||
from neo4j_semantic_ollama.information_tool import InformationTool
|
||||
from neo4j_semantic_ollama.memory_tool import MemoryTool
|
||||
from neo4j_semantic_ollama.recommendation_tool import RecommenderTool
|
||||
from neo4j_semantic_ollama.smalltalk_tool import SmalltalkTool
|
||||
|
||||
llm = ChatOllama(
|
||||
model="mixtral",
|
||||
temperature=0,
|
||||
base_url=os.environ["OLLAMA_BASE_URL"],
|
||||
streaming=True,
|
||||
)
|
||||
chat_model_with_stop = llm.bind(stop=["\nObservation"])
|
||||
tools = [InformationTool(), RecommenderTool(), MemoryTool(), SmalltalkTool()]
|
||||
|
||||
# Inspiration taken from hub.pull("hwchase17/react-json")
|
||||
system_message = f"""Answer the following questions as best you can.
|
||||
You can answer directly if the user is greeting you or similar.
|
||||
Otherise, you have access to the following tools:
|
||||
|
||||
{render_text_description_and_args(tools).replace('{', '{{').replace('}', '}}')}
|
||||
|
||||
The way you use the tools is by specifying a json blob.
|
||||
Specifically, this json should have a `action` key (with the name of the tool to use)
|
||||
and a `action_input` key (with the input to the tool going here).
|
||||
The only values that should be in the "action" field are: {[t.name for t in tools]}
|
||||
The $JSON_BLOB should only contain a SINGLE action,
|
||||
do NOT return a list of multiple actions.
|
||||
Here is an example of a valid $JSON_BLOB:
|
||||
```
|
||||
{{{{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $INPUT
|
||||
}}}}
|
||||
```
|
||||
The $JSON_BLOB must always be enclosed with triple backticks!
|
||||
|
||||
ALWAYS use the following format:
|
||||
Question: the input question you must answer
|
||||
Thought: you should always think about what to do
|
||||
Action:```
|
||||
$JSON_BLOB
|
||||
```
|
||||
Observation: the result of the action...
|
||||
(this Thought/Action/Observation can repeat N times)
|
||||
Thought: I now know the final answer
|
||||
Final Answer: the final answer to the original input question
|
||||
|
||||
Begin! Reminder to always use the exact characters `Final Answer` when responding.'
|
||||
"""
|
||||
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
(
|
||||
"user",
|
||||
system_message,
|
||||
),
|
||||
MessagesPlaceholder(variable_name="chat_history"),
|
||||
("user", "{input}"),
|
||||
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
buffer = []
|
||||
for human, ai in chat_history:
|
||||
buffer.append(HumanMessage(content=human))
|
||||
buffer.append(AIMessage(content=ai))
|
||||
return buffer
|
||||
|
||||
|
||||
agent = (
|
||||
{
|
||||
"input": lambda x: x["input"],
|
||||
"agent_scratchpad": lambda x: format_log_to_messages(x["intermediate_steps"]),
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"])
|
||||
if x.get("chat_history")
|
||||
else [],
|
||||
}
|
||||
| prompt
|
||||
| chat_model_with_stop
|
||||
| ReActJsonSingleInputOutputParser()
|
||||
)
|
||||
|
||||
|
||||
# Add typing for input
|
||||
class AgentInput(BaseModel):
|
||||
input: str
|
||||
chat_history: List[Tuple[str, str]] = Field(
|
||||
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
|
||||
)
|
||||
|
||||
|
||||
agent_executor = AgentExecutor(agent=agent, tools=tools).with_types(
|
||||
input_type=AgentInput
|
||||
)
|
Reference in New Issue
Block a user