mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 13:33:37 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
208
libs/community/langchain_community/callbacks/openai_info.py
Normal file
208
libs/community/langchain_community/callbacks/openai_info.py
Normal file
@@ -0,0 +1,208 @@
|
||||
"""Callback Handler that prints to std out."""
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from langchain_core.callbacks import BaseCallbackHandler
|
||||
from langchain_core.outputs import LLMResult
|
||||
|
||||
MODEL_COST_PER_1K_TOKENS = {
|
||||
# GPT-4 input
|
||||
"gpt-4": 0.03,
|
||||
"gpt-4-0314": 0.03,
|
||||
"gpt-4-0613": 0.03,
|
||||
"gpt-4-32k": 0.06,
|
||||
"gpt-4-32k-0314": 0.06,
|
||||
"gpt-4-32k-0613": 0.06,
|
||||
"gpt-4-vision-preview": 0.01,
|
||||
"gpt-4-1106-preview": 0.01,
|
||||
# GPT-4 output
|
||||
"gpt-4-completion": 0.06,
|
||||
"gpt-4-0314-completion": 0.06,
|
||||
"gpt-4-0613-completion": 0.06,
|
||||
"gpt-4-32k-completion": 0.12,
|
||||
"gpt-4-32k-0314-completion": 0.12,
|
||||
"gpt-4-32k-0613-completion": 0.12,
|
||||
"gpt-4-vision-preview-completion": 0.03,
|
||||
"gpt-4-1106-preview-completion": 0.03,
|
||||
# GPT-3.5 input
|
||||
"gpt-3.5-turbo": 0.0015,
|
||||
"gpt-3.5-turbo-0301": 0.0015,
|
||||
"gpt-3.5-turbo-0613": 0.0015,
|
||||
"gpt-3.5-turbo-1106": 0.001,
|
||||
"gpt-3.5-turbo-instruct": 0.0015,
|
||||
"gpt-3.5-turbo-16k": 0.003,
|
||||
"gpt-3.5-turbo-16k-0613": 0.003,
|
||||
# GPT-3.5 output
|
||||
"gpt-3.5-turbo-completion": 0.002,
|
||||
"gpt-3.5-turbo-0301-completion": 0.002,
|
||||
"gpt-3.5-turbo-0613-completion": 0.002,
|
||||
"gpt-3.5-turbo-1106-completion": 0.002,
|
||||
"gpt-3.5-turbo-instruct-completion": 0.002,
|
||||
"gpt-3.5-turbo-16k-completion": 0.004,
|
||||
"gpt-3.5-turbo-16k-0613-completion": 0.004,
|
||||
# Azure GPT-35 input
|
||||
"gpt-35-turbo": 0.0015, # Azure OpenAI version of ChatGPT
|
||||
"gpt-35-turbo-0301": 0.0015, # Azure OpenAI version of ChatGPT
|
||||
"gpt-35-turbo-0613": 0.0015,
|
||||
"gpt-35-turbo-instruct": 0.0015,
|
||||
"gpt-35-turbo-16k": 0.003,
|
||||
"gpt-35-turbo-16k-0613": 0.003,
|
||||
# Azure GPT-35 output
|
||||
"gpt-35-turbo-completion": 0.002, # Azure OpenAI version of ChatGPT
|
||||
"gpt-35-turbo-0301-completion": 0.002, # Azure OpenAI version of ChatGPT
|
||||
"gpt-35-turbo-0613-completion": 0.002,
|
||||
"gpt-35-turbo-instruct-completion": 0.002,
|
||||
"gpt-35-turbo-16k-completion": 0.004,
|
||||
"gpt-35-turbo-16k-0613-completion": 0.004,
|
||||
# Others
|
||||
"text-ada-001": 0.0004,
|
||||
"ada": 0.0004,
|
||||
"text-babbage-001": 0.0005,
|
||||
"babbage": 0.0005,
|
||||
"text-curie-001": 0.002,
|
||||
"curie": 0.002,
|
||||
"text-davinci-003": 0.02,
|
||||
"text-davinci-002": 0.02,
|
||||
"code-davinci-002": 0.02,
|
||||
# Fine Tuned input
|
||||
"babbage-002-finetuned": 0.0016,
|
||||
"davinci-002-finetuned": 0.012,
|
||||
"gpt-3.5-turbo-0613-finetuned": 0.012,
|
||||
# Fine Tuned output
|
||||
"babbage-002-finetuned-completion": 0.0016,
|
||||
"davinci-002-finetuned-completion": 0.012,
|
||||
"gpt-3.5-turbo-0613-finetuned-completion": 0.016,
|
||||
# Azure Fine Tuned input
|
||||
"babbage-002-azure-finetuned": 0.0004,
|
||||
"davinci-002-azure-finetuned": 0.002,
|
||||
"gpt-35-turbo-0613-azure-finetuned": 0.0015,
|
||||
# Azure Fine Tuned output
|
||||
"babbage-002-azure-finetuned-completion": 0.0004,
|
||||
"davinci-002-azure-finetuned-completion": 0.002,
|
||||
"gpt-35-turbo-0613-azure-finetuned-completion": 0.002,
|
||||
# Legacy fine-tuned models
|
||||
"ada-finetuned-legacy": 0.0016,
|
||||
"babbage-finetuned-legacy": 0.0024,
|
||||
"curie-finetuned-legacy": 0.012,
|
||||
"davinci-finetuned-legacy": 0.12,
|
||||
}
|
||||
|
||||
|
||||
def standardize_model_name(
|
||||
model_name: str,
|
||||
is_completion: bool = False,
|
||||
) -> str:
|
||||
"""
|
||||
Standardize the model name to a format that can be used in the OpenAI API.
|
||||
|
||||
Args:
|
||||
model_name: Model name to standardize.
|
||||
is_completion: Whether the model is used for completion or not.
|
||||
Defaults to False.
|
||||
|
||||
Returns:
|
||||
Standardized model name.
|
||||
|
||||
"""
|
||||
model_name = model_name.lower()
|
||||
if ".ft-" in model_name:
|
||||
model_name = model_name.split(".ft-")[0] + "-azure-finetuned"
|
||||
if ":ft-" in model_name:
|
||||
model_name = model_name.split(":")[0] + "-finetuned-legacy"
|
||||
if "ft:" in model_name:
|
||||
model_name = model_name.split(":")[1] + "-finetuned"
|
||||
if is_completion and (
|
||||
model_name.startswith("gpt-4")
|
||||
or model_name.startswith("gpt-3.5")
|
||||
or model_name.startswith("gpt-35")
|
||||
or ("finetuned" in model_name and "legacy" not in model_name)
|
||||
):
|
||||
return model_name + "-completion"
|
||||
else:
|
||||
return model_name
|
||||
|
||||
|
||||
def get_openai_token_cost_for_model(
|
||||
model_name: str, num_tokens: int, is_completion: bool = False
|
||||
) -> float:
|
||||
"""
|
||||
Get the cost in USD for a given model and number of tokens.
|
||||
|
||||
Args:
|
||||
model_name: Name of the model
|
||||
num_tokens: Number of tokens.
|
||||
is_completion: Whether the model is used for completion or not.
|
||||
Defaults to False.
|
||||
|
||||
Returns:
|
||||
Cost in USD.
|
||||
"""
|
||||
model_name = standardize_model_name(model_name, is_completion=is_completion)
|
||||
if model_name not in MODEL_COST_PER_1K_TOKENS:
|
||||
raise ValueError(
|
||||
f"Unknown model: {model_name}. Please provide a valid OpenAI model name."
|
||||
"Known models are: " + ", ".join(MODEL_COST_PER_1K_TOKENS.keys())
|
||||
)
|
||||
return MODEL_COST_PER_1K_TOKENS[model_name] * (num_tokens / 1000)
|
||||
|
||||
|
||||
class OpenAICallbackHandler(BaseCallbackHandler):
|
||||
"""Callback Handler that tracks OpenAI info."""
|
||||
|
||||
total_tokens: int = 0
|
||||
prompt_tokens: int = 0
|
||||
completion_tokens: int = 0
|
||||
successful_requests: int = 0
|
||||
total_cost: float = 0.0
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (
|
||||
f"Tokens Used: {self.total_tokens}\n"
|
||||
f"\tPrompt Tokens: {self.prompt_tokens}\n"
|
||||
f"\tCompletion Tokens: {self.completion_tokens}\n"
|
||||
f"Successful Requests: {self.successful_requests}\n"
|
||||
f"Total Cost (USD): ${self.total_cost}"
|
||||
)
|
||||
|
||||
@property
|
||||
def always_verbose(self) -> bool:
|
||||
"""Whether to call verbose callbacks even if verbose is False."""
|
||||
return True
|
||||
|
||||
def on_llm_start(
|
||||
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
||||
) -> None:
|
||||
"""Print out the prompts."""
|
||||
pass
|
||||
|
||||
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
||||
"""Print out the token."""
|
||||
pass
|
||||
|
||||
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
||||
"""Collect token usage."""
|
||||
if response.llm_output is None:
|
||||
return None
|
||||
self.successful_requests += 1
|
||||
if "token_usage" not in response.llm_output:
|
||||
return None
|
||||
token_usage = response.llm_output["token_usage"]
|
||||
completion_tokens = token_usage.get("completion_tokens", 0)
|
||||
prompt_tokens = token_usage.get("prompt_tokens", 0)
|
||||
model_name = standardize_model_name(response.llm_output.get("model_name", ""))
|
||||
if model_name in MODEL_COST_PER_1K_TOKENS:
|
||||
completion_cost = get_openai_token_cost_for_model(
|
||||
model_name, completion_tokens, is_completion=True
|
||||
)
|
||||
prompt_cost = get_openai_token_cost_for_model(model_name, prompt_tokens)
|
||||
self.total_cost += prompt_cost + completion_cost
|
||||
self.total_tokens += token_usage.get("total_tokens", 0)
|
||||
self.prompt_tokens += prompt_tokens
|
||||
self.completion_tokens += completion_tokens
|
||||
|
||||
def __copy__(self) -> "OpenAICallbackHandler":
|
||||
"""Return a copy of the callback handler."""
|
||||
return self
|
||||
|
||||
def __deepcopy__(self, memo: Any) -> "OpenAICallbackHandler":
|
||||
"""Return a deep copy of the callback handler."""
|
||||
return self
|
Reference in New Issue
Block a user