mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 20:46:45 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
131
libs/community/langchain_community/chat_models/bedrock.py
Normal file
131
libs/community/langchain_community/chat_models/bedrock.py
Normal file
@@ -0,0 +1,131 @@
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import Extra
|
||||
|
||||
from langchain_community.chat_models.anthropic import (
|
||||
convert_messages_to_prompt_anthropic,
|
||||
)
|
||||
from langchain_community.chat_models.meta import convert_messages_to_prompt_llama
|
||||
from langchain_community.llms.bedrock import BedrockBase
|
||||
from langchain_community.utilities.anthropic import (
|
||||
get_num_tokens_anthropic,
|
||||
get_token_ids_anthropic,
|
||||
)
|
||||
|
||||
|
||||
class ChatPromptAdapter:
|
||||
"""Adapter class to prepare the inputs from Langchain to prompt format
|
||||
that Chat model expects.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def convert_messages_to_prompt(
|
||||
cls, provider: str, messages: List[BaseMessage]
|
||||
) -> str:
|
||||
if provider == "anthropic":
|
||||
prompt = convert_messages_to_prompt_anthropic(messages=messages)
|
||||
elif provider == "meta":
|
||||
prompt = convert_messages_to_prompt_llama(messages=messages)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Provider {provider} model does not support chat."
|
||||
)
|
||||
return prompt
|
||||
|
||||
|
||||
class BedrockChat(BaseChatModel, BedrockBase):
|
||||
"""A chat model that uses the Bedrock API."""
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of chat model."""
|
||||
return "amazon_bedrock_chat"
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
"""Return whether this model can be serialized by Langchain."""
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def get_lc_namespace(cls) -> List[str]:
|
||||
"""Get the namespace of the langchain object."""
|
||||
return ["langchain", "chat_models", "bedrock"]
|
||||
|
||||
@property
|
||||
def lc_attributes(self) -> Dict[str, Any]:
|
||||
attributes: Dict[str, Any] = {}
|
||||
|
||||
if self.region_name:
|
||||
attributes["region_name"] = self.region_name
|
||||
|
||||
return attributes
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
provider = self._get_provider()
|
||||
prompt = ChatPromptAdapter.convert_messages_to_prompt(
|
||||
provider=provider, messages=messages
|
||||
)
|
||||
|
||||
for chunk in self._prepare_input_and_invoke_stream(
|
||||
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
|
||||
):
|
||||
delta = chunk.text
|
||||
yield ChatGenerationChunk(message=AIMessageChunk(content=delta))
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
completion = ""
|
||||
|
||||
if self.streaming:
|
||||
for chunk in self._stream(messages, stop, run_manager, **kwargs):
|
||||
completion += chunk.text
|
||||
else:
|
||||
provider = self._get_provider()
|
||||
prompt = ChatPromptAdapter.convert_messages_to_prompt(
|
||||
provider=provider, messages=messages
|
||||
)
|
||||
|
||||
params: Dict[str, Any] = {**kwargs}
|
||||
if stop:
|
||||
params["stop_sequences"] = stop
|
||||
|
||||
completion = self._prepare_input_and_invoke(
|
||||
prompt=prompt, stop=stop, run_manager=run_manager, **params
|
||||
)
|
||||
|
||||
message = AIMessage(content=completion)
|
||||
return ChatResult(generations=[ChatGeneration(message=message)])
|
||||
|
||||
def get_num_tokens(self, text: str) -> int:
|
||||
if self._model_is_anthropic:
|
||||
return get_num_tokens_anthropic(text)
|
||||
else:
|
||||
return super().get_num_tokens(text)
|
||||
|
||||
def get_token_ids(self, text: str) -> List[int]:
|
||||
if self._model_is_anthropic:
|
||||
return get_token_ids_anthropic(text)
|
||||
else:
|
||||
return super().get_token_ids(text)
|
Reference in New Issue
Block a user