mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-23 11:30:37 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
123
libs/community/langchain_community/chat_models/ollama.py
Normal file
123
libs/community/langchain_community/chat_models/ollama.py
Normal file
@@ -0,0 +1,123 @@
|
||||
import json
|
||||
from typing import Any, Iterator, List, Optional
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
ChatMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
|
||||
from langchain_community.llms.ollama import _OllamaCommon
|
||||
|
||||
|
||||
def _stream_response_to_chat_generation_chunk(
|
||||
stream_response: str,
|
||||
) -> ChatGenerationChunk:
|
||||
"""Convert a stream response to a generation chunk."""
|
||||
parsed_response = json.loads(stream_response)
|
||||
generation_info = parsed_response if parsed_response.get("done") is True else None
|
||||
return ChatGenerationChunk(
|
||||
message=AIMessageChunk(content=parsed_response.get("response", "")),
|
||||
generation_info=generation_info,
|
||||
)
|
||||
|
||||
|
||||
class ChatOllama(BaseChatModel, _OllamaCommon):
|
||||
"""Ollama locally runs large language models.
|
||||
|
||||
To use, follow the instructions at https://ollama.ai/.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.chat_models import ChatOllama
|
||||
ollama = ChatOllama(model="llama2")
|
||||
"""
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of chat model."""
|
||||
return "ollama-chat"
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
"""Return whether this model can be serialized by Langchain."""
|
||||
return False
|
||||
|
||||
def _format_message_as_text(self, message: BaseMessage) -> str:
|
||||
if isinstance(message, ChatMessage):
|
||||
message_text = f"\n\n{message.role.capitalize()}: {message.content}"
|
||||
elif isinstance(message, HumanMessage):
|
||||
message_text = f"[INST] {message.content} [/INST]"
|
||||
elif isinstance(message, AIMessage):
|
||||
message_text = f"{message.content}"
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_text = f"<<SYS>> {message.content} <</SYS>>"
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
return message_text
|
||||
|
||||
def _format_messages_as_text(self, messages: List[BaseMessage]) -> str:
|
||||
return "\n".join(
|
||||
[self._format_message_as_text(message) for message in messages]
|
||||
)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
"""Call out to Ollama's generate endpoint.
|
||||
|
||||
Args:
|
||||
messages: The list of base messages to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
|
||||
Returns:
|
||||
Chat generations from the model
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
response = ollama([
|
||||
HumanMessage(content="Tell me about the history of AI")
|
||||
])
|
||||
"""
|
||||
|
||||
prompt = self._format_messages_as_text(messages)
|
||||
final_chunk = super()._stream_with_aggregation(
|
||||
prompt, stop=stop, run_manager=run_manager, verbose=self.verbose, **kwargs
|
||||
)
|
||||
chat_generation = ChatGeneration(
|
||||
message=AIMessage(content=final_chunk.text),
|
||||
generation_info=final_chunk.generation_info,
|
||||
)
|
||||
return ChatResult(generations=[chat_generation])
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
prompt = self._format_messages_as_text(messages)
|
||||
for stream_resp in self._create_stream(prompt, stop, **kwargs):
|
||||
if stream_resp:
|
||||
chunk = _stream_response_to_chat_generation_chunk(stream_resp)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(
|
||||
chunk.text,
|
||||
verbose=self.verbose,
|
||||
)
|
Reference in New Issue
Block a user