mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 04:28:58 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
@@ -0,0 +1,743 @@
|
||||
import logging
|
||||
from enum import Enum
|
||||
from io import BytesIO
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import requests
|
||||
from langchain_core.documents import Document
|
||||
from tenacity import (
|
||||
before_sleep_log,
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
)
|
||||
|
||||
from langchain_community.document_loaders.base import BaseLoader
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ContentFormat(str, Enum):
|
||||
"""Enumerator of the content formats of Confluence page."""
|
||||
|
||||
EDITOR = "body.editor"
|
||||
EXPORT_VIEW = "body.export_view"
|
||||
ANONYMOUS_EXPORT_VIEW = "body.anonymous_export_view"
|
||||
STORAGE = "body.storage"
|
||||
VIEW = "body.view"
|
||||
|
||||
def get_content(self, page: dict) -> str:
|
||||
return page["body"][self.name.lower()]["value"]
|
||||
|
||||
|
||||
class ConfluenceLoader(BaseLoader):
|
||||
"""Load `Confluence` pages.
|
||||
|
||||
Port of https://llamahub.ai/l/confluence
|
||||
This currently supports username/api_key, Oauth2 login or personal access token
|
||||
authentication.
|
||||
|
||||
Specify a list page_ids and/or space_key to load in the corresponding pages into
|
||||
Document objects, if both are specified the union of both sets will be returned.
|
||||
|
||||
You can also specify a boolean `include_attachments` to include attachments, this
|
||||
is set to False by default, if set to True all attachments will be downloaded and
|
||||
ConfluenceReader will extract the text from the attachments and add it to the
|
||||
Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG,
|
||||
SVG, Word and Excel.
|
||||
|
||||
Confluence API supports difference format of page content. The storage format is the
|
||||
raw XML representation for storage. The view format is the HTML representation for
|
||||
viewing with macros are rendered as though it is viewed by users. You can pass
|
||||
a enum `content_format` argument to `load()` to specify the content format, this is
|
||||
set to `ContentFormat.STORAGE` by default, the supported values are:
|
||||
`ContentFormat.EDITOR`, `ContentFormat.EXPORT_VIEW`,
|
||||
`ContentFormat.ANONYMOUS_EXPORT_VIEW`, `ContentFormat.STORAGE`,
|
||||
and `ContentFormat.VIEW`.
|
||||
|
||||
Hint: space_key and page_id can both be found in the URL of a page in Confluence
|
||||
- https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id>
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.document_loaders import ConfluenceLoader
|
||||
|
||||
loader = ConfluenceLoader(
|
||||
url="https://yoursite.atlassian.com/wiki",
|
||||
username="me",
|
||||
api_key="12345"
|
||||
)
|
||||
documents = loader.load(space_key="SPACE",limit=50)
|
||||
|
||||
# Server on perm
|
||||
loader = ConfluenceLoader(
|
||||
url="https://confluence.yoursite.com/",
|
||||
username="me",
|
||||
api_key="your_password",
|
||||
cloud=False
|
||||
)
|
||||
documents = loader.load(space_key="SPACE",limit=50)
|
||||
|
||||
:param url: _description_
|
||||
:type url: str
|
||||
:param api_key: _description_, defaults to None
|
||||
:type api_key: str, optional
|
||||
:param username: _description_, defaults to None
|
||||
:type username: str, optional
|
||||
:param oauth2: _description_, defaults to {}
|
||||
:type oauth2: dict, optional
|
||||
:param token: _description_, defaults to None
|
||||
:type token: str, optional
|
||||
:param cloud: _description_, defaults to True
|
||||
:type cloud: bool, optional
|
||||
:param number_of_retries: How many times to retry, defaults to 3
|
||||
:type number_of_retries: Optional[int], optional
|
||||
:param min_retry_seconds: defaults to 2
|
||||
:type min_retry_seconds: Optional[int], optional
|
||||
:param max_retry_seconds: defaults to 10
|
||||
:type max_retry_seconds: Optional[int], optional
|
||||
:param confluence_kwargs: additional kwargs to initialize confluence with
|
||||
:type confluence_kwargs: dict, optional
|
||||
:raises ValueError: Errors while validating input
|
||||
:raises ImportError: Required dependencies not installed.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
url: str,
|
||||
api_key: Optional[str] = None,
|
||||
username: Optional[str] = None,
|
||||
session: Optional[requests.Session] = None,
|
||||
oauth2: Optional[dict] = None,
|
||||
token: Optional[str] = None,
|
||||
cloud: Optional[bool] = True,
|
||||
number_of_retries: Optional[int] = 3,
|
||||
min_retry_seconds: Optional[int] = 2,
|
||||
max_retry_seconds: Optional[int] = 10,
|
||||
confluence_kwargs: Optional[dict] = None,
|
||||
):
|
||||
confluence_kwargs = confluence_kwargs or {}
|
||||
errors = ConfluenceLoader.validate_init_args(
|
||||
url=url,
|
||||
api_key=api_key,
|
||||
username=username,
|
||||
session=session,
|
||||
oauth2=oauth2,
|
||||
token=token,
|
||||
)
|
||||
if errors:
|
||||
raise ValueError(f"Error(s) while validating input: {errors}")
|
||||
try:
|
||||
from atlassian import Confluence # noqa: F401
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`atlassian` package not found, please run "
|
||||
"`pip install atlassian-python-api`"
|
||||
)
|
||||
|
||||
self.base_url = url
|
||||
self.number_of_retries = number_of_retries
|
||||
self.min_retry_seconds = min_retry_seconds
|
||||
self.max_retry_seconds = max_retry_seconds
|
||||
|
||||
if session:
|
||||
self.confluence = Confluence(url=url, session=session, **confluence_kwargs)
|
||||
elif oauth2:
|
||||
self.confluence = Confluence(
|
||||
url=url, oauth2=oauth2, cloud=cloud, **confluence_kwargs
|
||||
)
|
||||
elif token:
|
||||
self.confluence = Confluence(
|
||||
url=url, token=token, cloud=cloud, **confluence_kwargs
|
||||
)
|
||||
else:
|
||||
self.confluence = Confluence(
|
||||
url=url,
|
||||
username=username,
|
||||
password=api_key,
|
||||
cloud=cloud,
|
||||
**confluence_kwargs,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def validate_init_args(
|
||||
url: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
username: Optional[str] = None,
|
||||
session: Optional[requests.Session] = None,
|
||||
oauth2: Optional[dict] = None,
|
||||
token: Optional[str] = None,
|
||||
) -> Union[List, None]:
|
||||
"""Validates proper combinations of init arguments"""
|
||||
|
||||
errors = []
|
||||
if url is None:
|
||||
errors.append("Must provide `base_url`")
|
||||
|
||||
if (api_key and not username) or (username and not api_key):
|
||||
errors.append(
|
||||
"If one of `api_key` or `username` is provided, "
|
||||
"the other must be as well."
|
||||
)
|
||||
|
||||
non_null_creds = list(
|
||||
x is not None for x in ((api_key or username), session, oauth2, token)
|
||||
)
|
||||
if sum(non_null_creds) > 1:
|
||||
all_names = ("(api_key, username)", "session", "oath2", "token")
|
||||
provided = tuple(n for x, n in zip(non_null_creds, all_names) if x)
|
||||
errors.append(
|
||||
f"Cannot provide a value for more than one of: {all_names}. Received "
|
||||
f"values for: {provided}"
|
||||
)
|
||||
if oauth2 and set(oauth2.keys()) != {
|
||||
"access_token",
|
||||
"access_token_secret",
|
||||
"consumer_key",
|
||||
"key_cert",
|
||||
}:
|
||||
errors.append(
|
||||
"You have either omitted require keys or added extra "
|
||||
"keys to the oauth2 dictionary. key values should be "
|
||||
"`['access_token', 'access_token_secret', 'consumer_key', 'key_cert']`"
|
||||
)
|
||||
return errors or None
|
||||
|
||||
def load(
|
||||
self,
|
||||
space_key: Optional[str] = None,
|
||||
page_ids: Optional[List[str]] = None,
|
||||
label: Optional[str] = None,
|
||||
cql: Optional[str] = None,
|
||||
include_restricted_content: bool = False,
|
||||
include_archived_content: bool = False,
|
||||
include_attachments: bool = False,
|
||||
include_comments: bool = False,
|
||||
content_format: ContentFormat = ContentFormat.STORAGE,
|
||||
limit: Optional[int] = 50,
|
||||
max_pages: Optional[int] = 1000,
|
||||
ocr_languages: Optional[str] = None,
|
||||
keep_markdown_format: bool = False,
|
||||
keep_newlines: bool = False,
|
||||
) -> List[Document]:
|
||||
"""
|
||||
:param space_key: Space key retrieved from a confluence URL, defaults to None
|
||||
:type space_key: Optional[str], optional
|
||||
:param page_ids: List of specific page IDs to load, defaults to None
|
||||
:type page_ids: Optional[List[str]], optional
|
||||
:param label: Get all pages with this label, defaults to None
|
||||
:type label: Optional[str], optional
|
||||
:param cql: CQL Expression, defaults to None
|
||||
:type cql: Optional[str], optional
|
||||
:param include_restricted_content: defaults to False
|
||||
:type include_restricted_content: bool, optional
|
||||
:param include_archived_content: Whether to include archived content,
|
||||
defaults to False
|
||||
:type include_archived_content: bool, optional
|
||||
:param include_attachments: defaults to False
|
||||
:type include_attachments: bool, optional
|
||||
:param include_comments: defaults to False
|
||||
:type include_comments: bool, optional
|
||||
:param content_format: Specify content format, defaults to
|
||||
ContentFormat.STORAGE, the supported values are:
|
||||
`ContentFormat.EDITOR`, `ContentFormat.EXPORT_VIEW`,
|
||||
`ContentFormat.ANONYMOUS_EXPORT_VIEW`,
|
||||
`ContentFormat.STORAGE`, and `ContentFormat.VIEW`.
|
||||
:type content_format: ContentFormat
|
||||
:param limit: Maximum number of pages to retrieve per request, defaults to 50
|
||||
:type limit: int, optional
|
||||
:param max_pages: Maximum number of pages to retrieve in total, defaults 1000
|
||||
:type max_pages: int, optional
|
||||
:param ocr_languages: The languages to use for the Tesseract agent. To use a
|
||||
language, you'll first need to install the appropriate
|
||||
Tesseract language pack.
|
||||
:type ocr_languages: str, optional
|
||||
:param keep_markdown_format: Whether to keep the markdown format, defaults to
|
||||
False
|
||||
:type keep_markdown_format: bool
|
||||
:param keep_newlines: Whether to keep the newlines format, defaults to
|
||||
False
|
||||
:type keep_newlines: bool
|
||||
:raises ValueError: _description_
|
||||
:raises ImportError: _description_
|
||||
:return: _description_
|
||||
:rtype: List[Document]
|
||||
"""
|
||||
if not space_key and not page_ids and not label and not cql:
|
||||
raise ValueError(
|
||||
"Must specify at least one among `space_key`, `page_ids`, "
|
||||
"`label`, `cql` parameters."
|
||||
)
|
||||
|
||||
docs = []
|
||||
|
||||
if space_key:
|
||||
pages = self.paginate_request(
|
||||
self.confluence.get_all_pages_from_space,
|
||||
space=space_key,
|
||||
limit=limit,
|
||||
max_pages=max_pages,
|
||||
status="any" if include_archived_content else "current",
|
||||
expand=content_format.value,
|
||||
)
|
||||
docs += self.process_pages(
|
||||
pages,
|
||||
include_restricted_content,
|
||||
include_attachments,
|
||||
include_comments,
|
||||
content_format,
|
||||
ocr_languages=ocr_languages,
|
||||
keep_markdown_format=keep_markdown_format,
|
||||
keep_newlines=keep_newlines,
|
||||
)
|
||||
|
||||
if label:
|
||||
pages = self.paginate_request(
|
||||
self.confluence.get_all_pages_by_label,
|
||||
label=label,
|
||||
limit=limit,
|
||||
max_pages=max_pages,
|
||||
)
|
||||
ids_by_label = [page["id"] for page in pages]
|
||||
if page_ids:
|
||||
page_ids = list(set(page_ids + ids_by_label))
|
||||
else:
|
||||
page_ids = list(set(ids_by_label))
|
||||
|
||||
if cql:
|
||||
pages = self.paginate_request(
|
||||
self._search_content_by_cql,
|
||||
cql=cql,
|
||||
limit=limit,
|
||||
max_pages=max_pages,
|
||||
include_archived_spaces=include_archived_content,
|
||||
expand=content_format.value,
|
||||
)
|
||||
docs += self.process_pages(
|
||||
pages,
|
||||
include_restricted_content,
|
||||
include_attachments,
|
||||
include_comments,
|
||||
content_format,
|
||||
ocr_languages,
|
||||
keep_markdown_format,
|
||||
)
|
||||
|
||||
if page_ids:
|
||||
for page_id in page_ids:
|
||||
get_page = retry(
|
||||
reraise=True,
|
||||
stop=stop_after_attempt(
|
||||
self.number_of_retries # type: ignore[arg-type]
|
||||
),
|
||||
wait=wait_exponential(
|
||||
multiplier=1, # type: ignore[arg-type]
|
||||
min=self.min_retry_seconds, # type: ignore[arg-type]
|
||||
max=self.max_retry_seconds, # type: ignore[arg-type]
|
||||
),
|
||||
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||||
)(self.confluence.get_page_by_id)
|
||||
page = get_page(
|
||||
page_id=page_id, expand=f"{content_format.value},version"
|
||||
)
|
||||
if not include_restricted_content and not self.is_public_page(page):
|
||||
continue
|
||||
doc = self.process_page(
|
||||
page,
|
||||
include_attachments,
|
||||
include_comments,
|
||||
content_format,
|
||||
ocr_languages,
|
||||
keep_markdown_format,
|
||||
)
|
||||
docs.append(doc)
|
||||
|
||||
return docs
|
||||
|
||||
def _search_content_by_cql(
|
||||
self, cql: str, include_archived_spaces: Optional[bool] = None, **kwargs: Any
|
||||
) -> List[dict]:
|
||||
url = "rest/api/content/search"
|
||||
|
||||
params: Dict[str, Any] = {"cql": cql}
|
||||
params.update(kwargs)
|
||||
if include_archived_spaces is not None:
|
||||
params["includeArchivedSpaces"] = include_archived_spaces
|
||||
|
||||
response = self.confluence.get(url, params=params)
|
||||
return response.get("results", [])
|
||||
|
||||
def paginate_request(self, retrieval_method: Callable, **kwargs: Any) -> List:
|
||||
"""Paginate the various methods to retrieve groups of pages.
|
||||
|
||||
Unfortunately, due to page size, sometimes the Confluence API
|
||||
doesn't match the limit value. If `limit` is >100 confluence
|
||||
seems to cap the response to 100. Also, due to the Atlassian Python
|
||||
package, we don't get the "next" values from the "_links" key because
|
||||
they only return the value from the result key. So here, the pagination
|
||||
starts from 0 and goes until the max_pages, getting the `limit` number
|
||||
of pages with each request. We have to manually check if there
|
||||
are more docs based on the length of the returned list of pages, rather than
|
||||
just checking for the presence of a `next` key in the response like this page
|
||||
would have you do:
|
||||
https://developer.atlassian.com/server/confluence/pagination-in-the-rest-api/
|
||||
|
||||
:param retrieval_method: Function used to retrieve docs
|
||||
:type retrieval_method: callable
|
||||
:return: List of documents
|
||||
:rtype: List
|
||||
"""
|
||||
|
||||
max_pages = kwargs.pop("max_pages")
|
||||
docs: List[dict] = []
|
||||
while len(docs) < max_pages:
|
||||
get_pages = retry(
|
||||
reraise=True,
|
||||
stop=stop_after_attempt(
|
||||
self.number_of_retries # type: ignore[arg-type]
|
||||
),
|
||||
wait=wait_exponential(
|
||||
multiplier=1,
|
||||
min=self.min_retry_seconds, # type: ignore[arg-type]
|
||||
max=self.max_retry_seconds, # type: ignore[arg-type]
|
||||
),
|
||||
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||||
)(retrieval_method)
|
||||
batch = get_pages(**kwargs, start=len(docs))
|
||||
if not batch:
|
||||
break
|
||||
docs.extend(batch)
|
||||
return docs[:max_pages]
|
||||
|
||||
def is_public_page(self, page: dict) -> bool:
|
||||
"""Check if a page is publicly accessible."""
|
||||
restrictions = self.confluence.get_all_restrictions_for_content(page["id"])
|
||||
|
||||
return (
|
||||
page["status"] == "current"
|
||||
and not restrictions["read"]["restrictions"]["user"]["results"]
|
||||
and not restrictions["read"]["restrictions"]["group"]["results"]
|
||||
)
|
||||
|
||||
def process_pages(
|
||||
self,
|
||||
pages: List[dict],
|
||||
include_restricted_content: bool,
|
||||
include_attachments: bool,
|
||||
include_comments: bool,
|
||||
content_format: ContentFormat,
|
||||
ocr_languages: Optional[str] = None,
|
||||
keep_markdown_format: Optional[bool] = False,
|
||||
keep_newlines: bool = False,
|
||||
) -> List[Document]:
|
||||
"""Process a list of pages into a list of documents."""
|
||||
docs = []
|
||||
for page in pages:
|
||||
if not include_restricted_content and not self.is_public_page(page):
|
||||
continue
|
||||
doc = self.process_page(
|
||||
page,
|
||||
include_attachments,
|
||||
include_comments,
|
||||
content_format,
|
||||
ocr_languages=ocr_languages,
|
||||
keep_markdown_format=keep_markdown_format,
|
||||
keep_newlines=keep_newlines,
|
||||
)
|
||||
docs.append(doc)
|
||||
|
||||
return docs
|
||||
|
||||
def process_page(
|
||||
self,
|
||||
page: dict,
|
||||
include_attachments: bool,
|
||||
include_comments: bool,
|
||||
content_format: ContentFormat,
|
||||
ocr_languages: Optional[str] = None,
|
||||
keep_markdown_format: Optional[bool] = False,
|
||||
keep_newlines: bool = False,
|
||||
) -> Document:
|
||||
if keep_markdown_format:
|
||||
try:
|
||||
from markdownify import markdownify
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`markdownify` package not found, please run "
|
||||
"`pip install markdownify`"
|
||||
)
|
||||
if include_comments or not keep_markdown_format:
|
||||
try:
|
||||
from bs4 import BeautifulSoup # type: ignore
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`beautifulsoup4` package not found, please run "
|
||||
"`pip install beautifulsoup4`"
|
||||
)
|
||||
if include_attachments:
|
||||
attachment_texts = self.process_attachment(page["id"], ocr_languages)
|
||||
else:
|
||||
attachment_texts = []
|
||||
|
||||
content = content_format.get_content(page)
|
||||
if keep_markdown_format:
|
||||
# Use markdownify to keep the page Markdown style
|
||||
text = markdownify(content, heading_style="ATX") + "".join(attachment_texts)
|
||||
|
||||
else:
|
||||
if keep_newlines:
|
||||
text = BeautifulSoup(
|
||||
content.replace("</p>", "\n</p>").replace("<br />", "\n"), "lxml"
|
||||
).get_text(" ") + "".join(attachment_texts)
|
||||
else:
|
||||
text = BeautifulSoup(content, "lxml").get_text(
|
||||
" ", strip=True
|
||||
) + "".join(attachment_texts)
|
||||
|
||||
if include_comments:
|
||||
comments = self.confluence.get_page_comments(
|
||||
page["id"], expand="body.view.value", depth="all"
|
||||
)["results"]
|
||||
comment_texts = [
|
||||
BeautifulSoup(comment["body"]["view"]["value"], "lxml").get_text(
|
||||
" ", strip=True
|
||||
)
|
||||
for comment in comments
|
||||
]
|
||||
text = text + "".join(comment_texts)
|
||||
|
||||
metadata = {
|
||||
"title": page["title"],
|
||||
"id": page["id"],
|
||||
"source": self.base_url.strip("/") + page["_links"]["webui"],
|
||||
}
|
||||
|
||||
if "version" in page and "when" in page["version"]:
|
||||
metadata["when"] = page["version"]["when"]
|
||||
|
||||
return Document(
|
||||
page_content=text,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
def process_attachment(
|
||||
self,
|
||||
page_id: str,
|
||||
ocr_languages: Optional[str] = None,
|
||||
) -> List[str]:
|
||||
try:
|
||||
from PIL import Image # noqa: F401
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`Pillow` package not found, " "please run `pip install Pillow`"
|
||||
)
|
||||
|
||||
# depending on setup you may also need to set the correct path for
|
||||
# poppler and tesseract
|
||||
attachments = self.confluence.get_attachments_from_content(page_id)["results"]
|
||||
texts = []
|
||||
for attachment in attachments:
|
||||
media_type = attachment["metadata"]["mediaType"]
|
||||
absolute_url = self.base_url + attachment["_links"]["download"]
|
||||
title = attachment["title"]
|
||||
try:
|
||||
if media_type == "application/pdf":
|
||||
text = title + self.process_pdf(absolute_url, ocr_languages)
|
||||
elif (
|
||||
media_type == "image/png"
|
||||
or media_type == "image/jpg"
|
||||
or media_type == "image/jpeg"
|
||||
):
|
||||
text = title + self.process_image(absolute_url, ocr_languages)
|
||||
elif (
|
||||
media_type == "application/vnd.openxmlformats-officedocument"
|
||||
".wordprocessingml.document"
|
||||
):
|
||||
text = title + self.process_doc(absolute_url)
|
||||
elif media_type == "application/vnd.ms-excel":
|
||||
text = title + self.process_xls(absolute_url)
|
||||
elif media_type == "image/svg+xml":
|
||||
text = title + self.process_svg(absolute_url, ocr_languages)
|
||||
else:
|
||||
continue
|
||||
texts.append(text)
|
||||
except requests.HTTPError as e:
|
||||
if e.response.status_code == 404:
|
||||
print(f"Attachment not found at {absolute_url}")
|
||||
continue
|
||||
else:
|
||||
raise
|
||||
|
||||
return texts
|
||||
|
||||
def process_pdf(
|
||||
self,
|
||||
link: str,
|
||||
ocr_languages: Optional[str] = None,
|
||||
) -> str:
|
||||
try:
|
||||
import pytesseract # noqa: F401
|
||||
from pdf2image import convert_from_bytes # noqa: F401
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`pytesseract` or `pdf2image` package not found, "
|
||||
"please run `pip install pytesseract pdf2image`"
|
||||
)
|
||||
|
||||
response = self.confluence.request(path=link, absolute=True)
|
||||
text = ""
|
||||
|
||||
if (
|
||||
response.status_code != 200
|
||||
or response.content == b""
|
||||
or response.content is None
|
||||
):
|
||||
return text
|
||||
try:
|
||||
images = convert_from_bytes(response.content)
|
||||
except ValueError:
|
||||
return text
|
||||
|
||||
for i, image in enumerate(images):
|
||||
image_text = pytesseract.image_to_string(image, lang=ocr_languages)
|
||||
text += f"Page {i + 1}:\n{image_text}\n\n"
|
||||
|
||||
return text
|
||||
|
||||
def process_image(
|
||||
self,
|
||||
link: str,
|
||||
ocr_languages: Optional[str] = None,
|
||||
) -> str:
|
||||
try:
|
||||
import pytesseract # noqa: F401
|
||||
from PIL import Image # noqa: F401
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`pytesseract` or `Pillow` package not found, "
|
||||
"please run `pip install pytesseract Pillow`"
|
||||
)
|
||||
|
||||
response = self.confluence.request(path=link, absolute=True)
|
||||
text = ""
|
||||
|
||||
if (
|
||||
response.status_code != 200
|
||||
or response.content == b""
|
||||
or response.content is None
|
||||
):
|
||||
return text
|
||||
try:
|
||||
image = Image.open(BytesIO(response.content))
|
||||
except OSError:
|
||||
return text
|
||||
|
||||
return pytesseract.image_to_string(image, lang=ocr_languages)
|
||||
|
||||
def process_doc(self, link: str) -> str:
|
||||
try:
|
||||
import docx2txt # noqa: F401
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`docx2txt` package not found, please run `pip install docx2txt`"
|
||||
)
|
||||
|
||||
response = self.confluence.request(path=link, absolute=True)
|
||||
text = ""
|
||||
|
||||
if (
|
||||
response.status_code != 200
|
||||
or response.content == b""
|
||||
or response.content is None
|
||||
):
|
||||
return text
|
||||
file_data = BytesIO(response.content)
|
||||
|
||||
return docx2txt.process(file_data)
|
||||
|
||||
def process_xls(self, link: str) -> str:
|
||||
import io
|
||||
import os
|
||||
|
||||
try:
|
||||
import xlrd # noqa: F401
|
||||
|
||||
except ImportError:
|
||||
raise ImportError("`xlrd` package not found, please run `pip install xlrd`")
|
||||
|
||||
try:
|
||||
import pandas as pd
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`pandas` package not found, please run `pip install pandas`"
|
||||
)
|
||||
|
||||
response = self.confluence.request(path=link, absolute=True)
|
||||
text = ""
|
||||
|
||||
if (
|
||||
response.status_code != 200
|
||||
or response.content == b""
|
||||
or response.content is None
|
||||
):
|
||||
return text
|
||||
|
||||
filename = os.path.basename(link)
|
||||
# Getting the whole content of the url after filename,
|
||||
# Example: ".csv?version=2&modificationDate=1631800010678&cacheVersion=1&api=v2"
|
||||
file_extension = os.path.splitext(filename)[1]
|
||||
|
||||
if file_extension.startswith(
|
||||
".csv"
|
||||
): # if the extension found in the url is ".csv"
|
||||
content_string = response.content.decode("utf-8")
|
||||
df = pd.read_csv(io.StringIO(content_string))
|
||||
text += df.to_string(index=False, header=False) + "\n\n"
|
||||
else:
|
||||
workbook = xlrd.open_workbook(file_contents=response.content)
|
||||
for sheet in workbook.sheets():
|
||||
text += f"{sheet.name}:\n"
|
||||
for row in range(sheet.nrows):
|
||||
for col in range(sheet.ncols):
|
||||
text += f"{sheet.cell_value(row, col)}\t"
|
||||
text += "\n"
|
||||
text += "\n"
|
||||
|
||||
return text
|
||||
|
||||
def process_svg(
|
||||
self,
|
||||
link: str,
|
||||
ocr_languages: Optional[str] = None,
|
||||
) -> str:
|
||||
try:
|
||||
import pytesseract # noqa: F401
|
||||
from PIL import Image # noqa: F401
|
||||
from reportlab.graphics import renderPM # noqa: F401
|
||||
from svglib.svglib import svg2rlg # noqa: F401
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`pytesseract`, `Pillow`, `reportlab` or `svglib` package not found, "
|
||||
"please run `pip install pytesseract Pillow reportlab svglib`"
|
||||
)
|
||||
|
||||
response = self.confluence.request(path=link, absolute=True)
|
||||
text = ""
|
||||
|
||||
if (
|
||||
response.status_code != 200
|
||||
or response.content == b""
|
||||
or response.content is None
|
||||
):
|
||||
return text
|
||||
|
||||
drawing = svg2rlg(BytesIO(response.content))
|
||||
|
||||
img_data = BytesIO()
|
||||
renderPM.drawToFile(drawing, img_data, fmt="PNG")
|
||||
img_data.seek(0)
|
||||
image = Image.open(img_data)
|
||||
|
||||
return pytesseract.image_to_string(image, lang=ocr_languages)
|
Reference in New Issue
Block a user