mirror of
https://github.com/hwchase17/langchain.git
synced 2025-11-02 09:14:45 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
@@ -0,0 +1,92 @@
|
||||
import itertools
|
||||
import logging
|
||||
import sys
|
||||
from typing import TYPE_CHECKING, Any, Iterator, List, Optional, Tuple
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain_community.document_loaders.base import BaseLoader
|
||||
|
||||
logger = logging.getLogger(__file__)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
|
||||
class PySparkDataFrameLoader(BaseLoader):
|
||||
"""Load `PySpark` DataFrames."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
spark_session: Optional["SparkSession"] = None,
|
||||
df: Optional[Any] = None,
|
||||
page_content_column: str = "text",
|
||||
fraction_of_memory: float = 0.1,
|
||||
):
|
||||
"""Initialize with a Spark DataFrame object.
|
||||
|
||||
Args:
|
||||
spark_session: The SparkSession object.
|
||||
df: The Spark DataFrame object.
|
||||
page_content_column: The name of the column containing the page content.
|
||||
Defaults to "text".
|
||||
fraction_of_memory: The fraction of memory to use. Defaults to 0.1.
|
||||
"""
|
||||
try:
|
||||
from pyspark.sql import DataFrame, SparkSession
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"pyspark is not installed. "
|
||||
"Please install it with `pip install pyspark`"
|
||||
)
|
||||
|
||||
self.spark = (
|
||||
spark_session if spark_session else SparkSession.builder.getOrCreate()
|
||||
)
|
||||
|
||||
if not isinstance(df, DataFrame):
|
||||
raise ValueError(
|
||||
f"Expected data_frame to be a PySpark DataFrame, got {type(df)}"
|
||||
)
|
||||
self.df = df
|
||||
self.page_content_column = page_content_column
|
||||
self.fraction_of_memory = fraction_of_memory
|
||||
self.num_rows, self.max_num_rows = self.get_num_rows()
|
||||
self.rdd_df = self.df.rdd.map(list)
|
||||
self.column_names = self.df.columns
|
||||
|
||||
def get_num_rows(self) -> Tuple[int, int]:
|
||||
"""Gets the number of "feasible" rows for the DataFrame"""
|
||||
try:
|
||||
import psutil
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"psutil not installed. Please install it with `pip install psutil`."
|
||||
) from e
|
||||
row = self.df.limit(1).collect()[0]
|
||||
estimated_row_size = sys.getsizeof(row)
|
||||
mem_info = psutil.virtual_memory()
|
||||
available_memory = mem_info.available
|
||||
max_num_rows = int(
|
||||
(available_memory / estimated_row_size) * self.fraction_of_memory
|
||||
)
|
||||
return min(max_num_rows, self.df.count()), max_num_rows
|
||||
|
||||
def lazy_load(self) -> Iterator[Document]:
|
||||
"""A lazy loader for document content."""
|
||||
for row in self.rdd_df.toLocalIterator():
|
||||
metadata = {self.column_names[i]: row[i] for i in range(len(row))}
|
||||
text = metadata[self.page_content_column]
|
||||
metadata.pop(self.page_content_column)
|
||||
yield Document(page_content=text, metadata=metadata)
|
||||
|
||||
def load(self) -> List[Document]:
|
||||
"""Load from the dataframe."""
|
||||
if self.df.count() > self.max_num_rows:
|
||||
logger.warning(
|
||||
f"The number of DataFrame rows is {self.df.count()}, "
|
||||
f"but we will only include the amount "
|
||||
f"of rows that can reasonably fit in memory: {self.num_rows}."
|
||||
)
|
||||
lazy_load_iterator = self.lazy_load()
|
||||
return list(itertools.islice(lazy_load_iterator, self.num_rows))
|
||||
Reference in New Issue
Block a user