mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-09 06:53:59 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
255
libs/community/langchain_community/embeddings/aleph_alpha.py
Normal file
255
libs/community/langchain_community/embeddings/aleph_alpha.py
Normal file
@@ -0,0 +1,255 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
|
||||
"""Aleph Alpha's asymmetric semantic embedding.
|
||||
|
||||
AA provides you with an endpoint to embed a document and a query.
|
||||
The models were optimized to make the embeddings of documents and
|
||||
the query for a document as similar as possible.
|
||||
To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding
|
||||
|
||||
embeddings = AlephAlphaAsymmetricSemanticEmbedding(
|
||||
normalize=True, compress_to_size=128
|
||||
)
|
||||
|
||||
document = "This is a content of the document"
|
||||
query = "What is the content of the document?"
|
||||
|
||||
doc_result = embeddings.embed_documents([document])
|
||||
query_result = embeddings.embed_query(query)
|
||||
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
|
||||
# Embedding params
|
||||
model: str = "luminous-base"
|
||||
"""Model name to use."""
|
||||
compress_to_size: Optional[int] = None
|
||||
"""Should the returned embeddings come back as an original 5120-dim vector,
|
||||
or should it be compressed to 128-dim."""
|
||||
normalize: Optional[bool] = None
|
||||
"""Should returned embeddings be normalized"""
|
||||
contextual_control_threshold: Optional[int] = None
|
||||
"""Attention control parameters only apply to those tokens that have
|
||||
explicitly been set in the request."""
|
||||
control_log_additive: bool = True
|
||||
"""Apply controls on prompt items by adding the log(control_factor)
|
||||
to attention scores."""
|
||||
|
||||
# Client params
|
||||
aleph_alpha_api_key: Optional[str] = None
|
||||
"""API key for Aleph Alpha API."""
|
||||
host: str = "https://api.aleph-alpha.com"
|
||||
"""The hostname of the API host.
|
||||
The default one is "https://api.aleph-alpha.com")"""
|
||||
hosting: Optional[str] = None
|
||||
"""Determines in which datacenters the request may be processed.
|
||||
You can either set the parameter to "aleph-alpha" or omit it (defaulting to None).
|
||||
Not setting this value, or setting it to None, gives us maximal flexibility
|
||||
in processing your request in our
|
||||
own datacenters and on servers hosted with other providers.
|
||||
Choose this option for maximal availability.
|
||||
Setting it to "aleph-alpha" allows us to only process the request
|
||||
in our own datacenters.
|
||||
Choose this option for maximal data privacy."""
|
||||
request_timeout_seconds: int = 305
|
||||
"""Client timeout that will be set for HTTP requests in the
|
||||
`requests` library's API calls.
|
||||
Server will close all requests after 300 seconds with an internal server error."""
|
||||
total_retries: int = 8
|
||||
"""The number of retries made in case requests fail with certain retryable
|
||||
status codes. If the last
|
||||
retry fails a corresponding exception is raised. Note, that between retries
|
||||
an exponential backoff
|
||||
is applied, starting with 0.5 s after the first retry and doubling for each
|
||||
retry made. So with the
|
||||
default setting of 8 retries a total wait time of 63.5 s is added between
|
||||
the retries."""
|
||||
nice: bool = False
|
||||
"""Setting this to True, will signal to the API that you intend to be
|
||||
nice to other users
|
||||
by de-prioritizing your request below concurrent ones."""
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
aleph_alpha_api_key = get_from_dict_or_env(
|
||||
values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY"
|
||||
)
|
||||
try:
|
||||
from aleph_alpha_client import Client
|
||||
|
||||
values["client"] = Client(
|
||||
token=aleph_alpha_api_key,
|
||||
host=values["host"],
|
||||
hosting=values["hosting"],
|
||||
request_timeout_seconds=values["request_timeout_seconds"],
|
||||
total_retries=values["total_retries"],
|
||||
nice=values["nice"],
|
||||
)
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import aleph_alpha_client python package. "
|
||||
"Please install it with `pip install aleph_alpha_client`."
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to Aleph Alpha's asymmetric Document endpoint.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
try:
|
||||
from aleph_alpha_client import (
|
||||
Prompt,
|
||||
SemanticEmbeddingRequest,
|
||||
SemanticRepresentation,
|
||||
)
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import aleph_alpha_client python package. "
|
||||
"Please install it with `pip install aleph_alpha_client`."
|
||||
)
|
||||
document_embeddings = []
|
||||
|
||||
for text in texts:
|
||||
document_params = {
|
||||
"prompt": Prompt.from_text(text),
|
||||
"representation": SemanticRepresentation.Document,
|
||||
"compress_to_size": self.compress_to_size,
|
||||
"normalize": self.normalize,
|
||||
"contextual_control_threshold": self.contextual_control_threshold,
|
||||
"control_log_additive": self.control_log_additive,
|
||||
}
|
||||
|
||||
document_request = SemanticEmbeddingRequest(**document_params)
|
||||
document_response = self.client.semantic_embed(
|
||||
request=document_request, model=self.model
|
||||
)
|
||||
|
||||
document_embeddings.append(document_response.embedding)
|
||||
|
||||
return document_embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
try:
|
||||
from aleph_alpha_client import (
|
||||
Prompt,
|
||||
SemanticEmbeddingRequest,
|
||||
SemanticRepresentation,
|
||||
)
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import aleph_alpha_client python package. "
|
||||
"Please install it with `pip install aleph_alpha_client`."
|
||||
)
|
||||
symmetric_params = {
|
||||
"prompt": Prompt.from_text(text),
|
||||
"representation": SemanticRepresentation.Query,
|
||||
"compress_to_size": self.compress_to_size,
|
||||
"normalize": self.normalize,
|
||||
"contextual_control_threshold": self.contextual_control_threshold,
|
||||
"control_log_additive": self.control_log_additive,
|
||||
}
|
||||
|
||||
symmetric_request = SemanticEmbeddingRequest(**symmetric_params)
|
||||
symmetric_response = self.client.semantic_embed(
|
||||
request=symmetric_request, model=self.model
|
||||
)
|
||||
|
||||
return symmetric_response.embedding
|
||||
|
||||
|
||||
class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding):
|
||||
"""The symmetric version of the Aleph Alpha's semantic embeddings.
|
||||
|
||||
The main difference is that here, both the documents and
|
||||
queries are embedded with a SemanticRepresentation.Symmetric
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding
|
||||
|
||||
embeddings = AlephAlphaAsymmetricSemanticEmbedding(
|
||||
normalize=True, compress_to_size=128
|
||||
)
|
||||
text = "This is a test text"
|
||||
|
||||
doc_result = embeddings.embed_documents([text])
|
||||
query_result = embeddings.embed_query(text)
|
||||
"""
|
||||
|
||||
def _embed(self, text: str) -> List[float]:
|
||||
try:
|
||||
from aleph_alpha_client import (
|
||||
Prompt,
|
||||
SemanticEmbeddingRequest,
|
||||
SemanticRepresentation,
|
||||
)
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import aleph_alpha_client python package. "
|
||||
"Please install it with `pip install aleph_alpha_client`."
|
||||
)
|
||||
query_params = {
|
||||
"prompt": Prompt.from_text(text),
|
||||
"representation": SemanticRepresentation.Symmetric,
|
||||
"compress_to_size": self.compress_to_size,
|
||||
"normalize": self.normalize,
|
||||
"contextual_control_threshold": self.contextual_control_threshold,
|
||||
"control_log_additive": self.control_log_additive,
|
||||
}
|
||||
|
||||
query_request = SemanticEmbeddingRequest(**query_params)
|
||||
query_response = self.client.semantic_embed(
|
||||
request=query_request, model=self.model
|
||||
)
|
||||
|
||||
return query_response.embedding
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to Aleph Alpha's Document endpoint.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
document_embeddings = []
|
||||
|
||||
for text in texts:
|
||||
document_embeddings.append(self._embed(text))
|
||||
return document_embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
return self._embed(text)
|
Reference in New Issue
Block a user