mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-02 11:39:18 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
163
libs/community/langchain_community/embeddings/clarifai.py
Normal file
163
libs/community/langchain_community/embeddings/clarifai.py
Normal file
@@ -0,0 +1,163 @@
|
||||
import logging
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ClarifaiEmbeddings(BaseModel, Embeddings):
|
||||
"""Clarifai embedding models.
|
||||
|
||||
To use, you should have the ``clarifai`` python package installed, and the
|
||||
environment variable ``CLARIFAI_PAT`` set with your personal access token or pass it
|
||||
as a named parameter to the constructor.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import ClarifaiEmbeddings
|
||||
clarifai = ClarifaiEmbeddings(user_id=USER_ID,
|
||||
app_id=APP_ID,
|
||||
model_id=MODEL_ID)
|
||||
(or)
|
||||
clarifai_llm = Clarifai(model_url=EXAMPLE_URL)
|
||||
"""
|
||||
|
||||
model_url: Optional[str] = None
|
||||
"""Model url to use."""
|
||||
model_id: Optional[str] = None
|
||||
"""Model id to use."""
|
||||
model_version_id: Optional[str] = None
|
||||
"""Model version id to use."""
|
||||
app_id: Optional[str] = None
|
||||
"""Clarifai application id to use."""
|
||||
user_id: Optional[str] = None
|
||||
"""Clarifai user id to use."""
|
||||
pat: Optional[str] = None
|
||||
"""Clarifai personal access token to use."""
|
||||
api_base: str = "https://api.clarifai.com"
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that we have all required info to access Clarifai
|
||||
platform and python package exists in environment."""
|
||||
|
||||
values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT")
|
||||
user_id = values.get("user_id")
|
||||
app_id = values.get("app_id")
|
||||
model_id = values.get("model_id")
|
||||
model_url = values.get("model_url")
|
||||
|
||||
if model_url is not None and model_id is not None:
|
||||
raise ValueError("Please provide either model_url or model_id, not both.")
|
||||
|
||||
if model_url is None and model_id is None:
|
||||
raise ValueError("Please provide one of model_url or model_id.")
|
||||
|
||||
if model_url is None and model_id is not None:
|
||||
if user_id is None or app_id is None:
|
||||
raise ValueError("Please provide a user_id and app_id.")
|
||||
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to Clarifai's embedding models.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
try:
|
||||
from clarifai.client.input import Inputs
|
||||
from clarifai.client.model import Model
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import clarifai python package. "
|
||||
"Please install it with `pip install clarifai`."
|
||||
)
|
||||
if self.pat is not None:
|
||||
pat = self.pat
|
||||
if self.model_url is not None:
|
||||
_model_init = Model(url=self.model_url, pat=pat)
|
||||
else:
|
||||
_model_init = Model(
|
||||
model_id=self.model_id,
|
||||
user_id=self.user_id,
|
||||
app_id=self.app_id,
|
||||
pat=pat,
|
||||
)
|
||||
|
||||
input_obj = Inputs(pat=pat)
|
||||
batch_size = 32
|
||||
embeddings = []
|
||||
|
||||
try:
|
||||
for i in range(0, len(texts), batch_size):
|
||||
batch = texts[i : i + batch_size]
|
||||
input_batch = [
|
||||
input_obj.get_text_input(input_id=str(id), raw_text=inp)
|
||||
for id, inp in enumerate(batch)
|
||||
]
|
||||
predict_response = _model_init.predict(input_batch)
|
||||
embeddings.extend(
|
||||
[
|
||||
list(output.data.embeddings[0].vector)
|
||||
for output in predict_response.outputs
|
||||
]
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Predict failed, exception: {e}")
|
||||
|
||||
return embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to Clarifai's embedding models.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
try:
|
||||
from clarifai.client.model import Model
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import clarifai python package. "
|
||||
"Please install it with `pip install clarifai`."
|
||||
)
|
||||
if self.pat is not None:
|
||||
pat = self.pat
|
||||
if self.model_url is not None:
|
||||
_model_init = Model(url=self.model_url, pat=pat)
|
||||
else:
|
||||
_model_init = Model(
|
||||
model_id=self.model_id,
|
||||
user_id=self.user_id,
|
||||
app_id=self.app_id,
|
||||
pat=pat,
|
||||
)
|
||||
|
||||
try:
|
||||
predict_response = _model_init.predict_by_bytes(
|
||||
bytes(text, "utf-8"), input_type="text"
|
||||
)
|
||||
embeddings = [
|
||||
list(op.data.embeddings[0].vector) for op in predict_response.outputs
|
||||
]
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Predict failed, exception: {e}")
|
||||
|
||||
return embeddings[0]
|
Reference in New Issue
Block a user