mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 13:33:37 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
379
libs/community/langchain_community/embeddings/gradient_ai.py
Normal file
379
libs/community/langchain_community/embeddings/gradient_ai.py
Normal file
@@ -0,0 +1,379 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple
|
||||
|
||||
import aiohttp
|
||||
import numpy as np
|
||||
import requests
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
__all__ = ["GradientEmbeddings"]
|
||||
|
||||
|
||||
class GradientEmbeddings(BaseModel, Embeddings):
|
||||
"""Gradient.ai Embedding models.
|
||||
|
||||
GradientLLM is a class to interact with Embedding Models on gradient.ai
|
||||
|
||||
To use, set the environment variable ``GRADIENT_ACCESS_TOKEN`` with your
|
||||
API token and ``GRADIENT_WORKSPACE_ID`` for your gradient workspace,
|
||||
or alternatively provide them as keywords to the constructor of this class.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import GradientEmbeddings
|
||||
GradientEmbeddings(
|
||||
model="bge-large",
|
||||
gradient_workspace_id="12345614fc0_workspace",
|
||||
gradient_access_token="gradientai-access_token",
|
||||
)
|
||||
"""
|
||||
|
||||
model: str
|
||||
"Underlying gradient.ai model id."
|
||||
|
||||
gradient_workspace_id: Optional[str] = None
|
||||
"Underlying gradient.ai workspace_id."
|
||||
|
||||
gradient_access_token: Optional[str] = None
|
||||
"""gradient.ai API Token, which can be generated by going to
|
||||
https://auth.gradient.ai/select-workspace
|
||||
and selecting "Access tokens" under the profile drop-down.
|
||||
"""
|
||||
|
||||
gradient_api_url: str = "https://api.gradient.ai/api"
|
||||
"""Endpoint URL to use."""
|
||||
|
||||
client: Any = None #: :meta private:
|
||||
"""Gradient client."""
|
||||
|
||||
# LLM call kwargs
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator(allow_reuse=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
|
||||
values["gradient_access_token"] = get_from_dict_or_env(
|
||||
values, "gradient_access_token", "GRADIENT_ACCESS_TOKEN"
|
||||
)
|
||||
values["gradient_workspace_id"] = get_from_dict_or_env(
|
||||
values, "gradient_workspace_id", "GRADIENT_WORKSPACE_ID"
|
||||
)
|
||||
|
||||
values["gradient_api_url"] = get_from_dict_or_env(
|
||||
values, "gradient_api_url", "GRADIENT_API_URL"
|
||||
)
|
||||
|
||||
values["client"] = TinyAsyncGradientEmbeddingClient(
|
||||
access_token=values["gradient_access_token"],
|
||||
workspace_id=values["gradient_workspace_id"],
|
||||
host=values["gradient_api_url"],
|
||||
)
|
||||
try:
|
||||
import gradientai # noqa
|
||||
except ImportError:
|
||||
logging.warning(
|
||||
"DeprecationWarning: `GradientEmbeddings` will use "
|
||||
"`pip install gradientai` in future releases of langchain."
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to Gradient's embedding endpoint.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = self.client.embed(
|
||||
model=self.model,
|
||||
texts=texts,
|
||||
)
|
||||
return embeddings
|
||||
|
||||
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Async call out to Gradient's embedding endpoint.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = await self.client.aembed(
|
||||
model=self.model,
|
||||
texts=texts,
|
||||
)
|
||||
return embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to Gradient's embedding endpoint.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
return self.embed_documents([text])[0]
|
||||
|
||||
async def aembed_query(self, text: str) -> List[float]:
|
||||
"""Async call out to Gradient's embedding endpoint.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
embeddings = await self.aembed_documents([text])
|
||||
return embeddings[0]
|
||||
|
||||
|
||||
class TinyAsyncGradientEmbeddingClient: #: :meta private:
|
||||
"""A helper tool to embed Gradient. Not part of Langchain's or Gradients stable API,
|
||||
direct use discouraged.
|
||||
|
||||
To use, set the environment variable ``GRADIENT_ACCESS_TOKEN`` with your
|
||||
API token and ``GRADIENT_WORKSPACE_ID`` for your gradient workspace,
|
||||
or alternatively provide them as keywords to the constructor of this class.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
|
||||
mini_client = TinyAsyncGradientEmbeddingClient(
|
||||
workspace_id="12345614fc0_workspace",
|
||||
access_token="gradientai-access_token",
|
||||
)
|
||||
embeds = mini_client.embed(
|
||||
model="bge-large",
|
||||
text=["doc1", "doc2"]
|
||||
)
|
||||
# or
|
||||
embeds = await mini_client.aembed(
|
||||
model="bge-large",
|
||||
text=["doc1", "doc2"]
|
||||
)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
access_token: Optional[str] = None,
|
||||
workspace_id: Optional[str] = None,
|
||||
host: str = "https://api.gradient.ai/api",
|
||||
aiosession: Optional[aiohttp.ClientSession] = None,
|
||||
) -> None:
|
||||
self.access_token = access_token or os.environ.get(
|
||||
"GRADIENT_ACCESS_TOKEN", None
|
||||
)
|
||||
self.workspace_id = workspace_id or os.environ.get(
|
||||
"GRADIENT_WORKSPACE_ID", None
|
||||
)
|
||||
self.host = host
|
||||
self.aiosession = aiosession
|
||||
|
||||
if self.access_token is None or len(self.access_token) < 10:
|
||||
raise ValueError(
|
||||
"env variable `GRADIENT_ACCESS_TOKEN` or "
|
||||
" param `access_token` must be set "
|
||||
)
|
||||
|
||||
if self.workspace_id is None or len(self.workspace_id) < 3:
|
||||
raise ValueError(
|
||||
"env variable `GRADIENT_WORKSPACE_ID` or "
|
||||
" param `workspace_id` must be set"
|
||||
)
|
||||
|
||||
if self.host is None or len(self.host) < 3:
|
||||
raise ValueError(" param `host` must be set to a valid url")
|
||||
self._batch_size = 128
|
||||
|
||||
@staticmethod
|
||||
def _permute(
|
||||
texts: List[str], sorter: Callable = len
|
||||
) -> Tuple[List[str], Callable]:
|
||||
"""Sort texts in ascending order, and
|
||||
delivers a lambda expr, which can sort a same length list
|
||||
https://github.com/UKPLab/sentence-transformers/blob/
|
||||
c5f93f70eca933c78695c5bc686ceda59651ae3b/sentence_transformers/SentenceTransformer.py#L156
|
||||
|
||||
Args:
|
||||
texts (List[str]): _description_
|
||||
sorter (Callable, optional): _description_. Defaults to len.
|
||||
|
||||
Returns:
|
||||
Tuple[List[str], Callable]: _description_
|
||||
|
||||
Example:
|
||||
```
|
||||
texts = ["one","three","four"]
|
||||
perm_texts, undo = self._permute(texts)
|
||||
texts == undo(perm_texts)
|
||||
```
|
||||
"""
|
||||
|
||||
if len(texts) == 1:
|
||||
# special case query
|
||||
return texts, lambda t: t
|
||||
length_sorted_idx = np.argsort([-sorter(sen) for sen in texts])
|
||||
texts_sorted = [texts[idx] for idx in length_sorted_idx]
|
||||
|
||||
return texts_sorted, lambda unsorted_embeddings: [ # noqa E731
|
||||
unsorted_embeddings[idx] for idx in np.argsort(length_sorted_idx)
|
||||
]
|
||||
|
||||
def _batch(self, texts: List[str]) -> List[List[str]]:
|
||||
"""
|
||||
splits Lists of text parts into batches of size max `self._batch_size`
|
||||
When encoding vector database,
|
||||
|
||||
Args:
|
||||
texts (List[str]): List of sentences
|
||||
self._batch_size (int, optional): max batch size of one request.
|
||||
|
||||
Returns:
|
||||
List[List[str]]: Batches of List of sentences
|
||||
"""
|
||||
if len(texts) == 1:
|
||||
# special case query
|
||||
return [texts]
|
||||
batches = []
|
||||
for start_index in range(0, len(texts), self._batch_size):
|
||||
batches.append(texts[start_index : start_index + self._batch_size])
|
||||
return batches
|
||||
|
||||
@staticmethod
|
||||
def _unbatch(batch_of_texts: List[List[Any]]) -> List[Any]:
|
||||
if len(batch_of_texts) == 1 and len(batch_of_texts[0]) == 1:
|
||||
# special case query
|
||||
return batch_of_texts[0]
|
||||
texts = []
|
||||
for sublist in batch_of_texts:
|
||||
texts.extend(sublist)
|
||||
return texts
|
||||
|
||||
def _kwargs_post_request(self, model: str, texts: List[str]) -> Dict[str, Any]:
|
||||
"""Build the kwargs for the Post request, used by sync
|
||||
|
||||
Args:
|
||||
model (str): _description_
|
||||
texts (List[str]): _description_
|
||||
|
||||
Returns:
|
||||
Dict[str, Collection[str]]: _description_
|
||||
"""
|
||||
return dict(
|
||||
url=f"{self.host}/embeddings/{model}",
|
||||
headers={
|
||||
"authorization": f"Bearer {self.access_token}",
|
||||
"x-gradient-workspace-id": f"{self.workspace_id}",
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
},
|
||||
json=dict(
|
||||
inputs=[{"input": i} for i in texts],
|
||||
),
|
||||
)
|
||||
|
||||
def _sync_request_embed(
|
||||
self, model: str, batch_texts: List[str]
|
||||
) -> List[List[float]]:
|
||||
response = requests.post(
|
||||
**self._kwargs_post_request(model=model, texts=batch_texts)
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise Exception(
|
||||
f"Gradient returned an unexpected response with status "
|
||||
f"{response.status_code}: {response.text}"
|
||||
)
|
||||
return [e["embedding"] for e in response.json()["embeddings"]]
|
||||
|
||||
def embed(self, model: str, texts: List[str]) -> List[List[float]]:
|
||||
"""call the embedding of model
|
||||
|
||||
Args:
|
||||
model (str): to embedding model
|
||||
texts (List[str]): List of sentences to embed.
|
||||
|
||||
Returns:
|
||||
List[List[float]]: List of vectors for each sentence
|
||||
"""
|
||||
perm_texts, unpermute_func = self._permute(texts)
|
||||
perm_texts_batched = self._batch(perm_texts)
|
||||
|
||||
# Request
|
||||
map_args = (
|
||||
self._sync_request_embed,
|
||||
[model] * len(perm_texts_batched),
|
||||
perm_texts_batched,
|
||||
)
|
||||
if len(perm_texts_batched) == 1:
|
||||
embeddings_batch_perm = list(map(*map_args))
|
||||
else:
|
||||
with ThreadPoolExecutor(32) as p:
|
||||
embeddings_batch_perm = list(p.map(*map_args))
|
||||
|
||||
embeddings_perm = self._unbatch(embeddings_batch_perm)
|
||||
embeddings = unpermute_func(embeddings_perm)
|
||||
return embeddings
|
||||
|
||||
async def _async_request(
|
||||
self, session: aiohttp.ClientSession, kwargs: Dict[str, Any]
|
||||
) -> List[List[float]]:
|
||||
async with session.post(**kwargs) as response:
|
||||
if response.status != 200:
|
||||
raise Exception(
|
||||
f"Gradient returned an unexpected response with status "
|
||||
f"{response.status}: {response.text}"
|
||||
)
|
||||
embedding = (await response.json())["embeddings"]
|
||||
return [e["embedding"] for e in embedding]
|
||||
|
||||
async def aembed(self, model: str, texts: List[str]) -> List[List[float]]:
|
||||
"""call the embedding of model, async method
|
||||
|
||||
Args:
|
||||
model (str): to embedding model
|
||||
texts (List[str]): List of sentences to embed.
|
||||
|
||||
Returns:
|
||||
List[List[float]]: List of vectors for each sentence
|
||||
"""
|
||||
perm_texts, unpermute_func = self._permute(texts)
|
||||
perm_texts_batched = self._batch(perm_texts)
|
||||
|
||||
# Request
|
||||
if self.aiosession is None:
|
||||
self.aiosession = aiohttp.ClientSession(
|
||||
trust_env=True, connector=aiohttp.TCPConnector(limit=32)
|
||||
)
|
||||
async with self.aiosession as session:
|
||||
embeddings_batch_perm = await asyncio.gather(
|
||||
*[
|
||||
self._async_request(
|
||||
session=session,
|
||||
**self._kwargs_post_request(model=model, texts=t),
|
||||
)
|
||||
for t in perm_texts_batched
|
||||
]
|
||||
)
|
||||
|
||||
embeddings_perm = self._unbatch(embeddings_batch_perm)
|
||||
embeddings = unpermute_func(embeddings_perm)
|
||||
return embeddings
|
Reference in New Issue
Block a user