mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-12 21:11:43 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
147
libs/community/langchain_community/embeddings/mosaicml.py
Normal file
147
libs/community/langchain_community/embeddings/mosaicml.py
Normal file
@@ -0,0 +1,147 @@
|
||||
from typing import Any, Dict, List, Mapping, Optional, Tuple
|
||||
|
||||
import requests
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class MosaicMLInstructorEmbeddings(BaseModel, Embeddings):
|
||||
"""MosaicML embedding service.
|
||||
|
||||
To use, you should have the
|
||||
environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass
|
||||
it as a named parameter to the constructor.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.llms import MosaicMLInstructorEmbeddings
|
||||
endpoint_url = (
|
||||
"https://models.hosted-on.mosaicml.hosting/instructor-large/v1/predict"
|
||||
)
|
||||
mosaic_llm = MosaicMLInstructorEmbeddings(
|
||||
endpoint_url=endpoint_url,
|
||||
mosaicml_api_token="my-api-key"
|
||||
)
|
||||
"""
|
||||
|
||||
endpoint_url: str = (
|
||||
"https://models.hosted-on.mosaicml.hosting/instructor-xl/v1/predict"
|
||||
)
|
||||
"""Endpoint URL to use."""
|
||||
embed_instruction: str = "Represent the document for retrieval: "
|
||||
"""Instruction used to embed documents."""
|
||||
query_instruction: str = (
|
||||
"Represent the question for retrieving supporting documents: "
|
||||
)
|
||||
"""Instruction used to embed the query."""
|
||||
retry_sleep: float = 1.0
|
||||
"""How long to try sleeping for if a rate limit is encountered"""
|
||||
|
||||
mosaicml_api_token: Optional[str] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
mosaicml_api_token = get_from_dict_or_env(
|
||||
values, "mosaicml_api_token", "MOSAICML_API_TOKEN"
|
||||
)
|
||||
values["mosaicml_api_token"] = mosaicml_api_token
|
||||
return values
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {"endpoint_url": self.endpoint_url}
|
||||
|
||||
def _embed(
|
||||
self, input: List[Tuple[str, str]], is_retry: bool = False
|
||||
) -> List[List[float]]:
|
||||
payload = {"inputs": input}
|
||||
|
||||
# HTTP headers for authorization
|
||||
headers = {
|
||||
"Authorization": f"{self.mosaicml_api_token}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
# send request
|
||||
try:
|
||||
response = requests.post(self.endpoint_url, headers=headers, json=payload)
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise ValueError(f"Error raised by inference endpoint: {e}")
|
||||
|
||||
try:
|
||||
if response.status_code == 429:
|
||||
if not is_retry:
|
||||
import time
|
||||
|
||||
time.sleep(self.retry_sleep)
|
||||
|
||||
return self._embed(input, is_retry=True)
|
||||
|
||||
raise ValueError(
|
||||
f"Error raised by inference API: rate limit exceeded.\nResponse: "
|
||||
f"{response.text}"
|
||||
)
|
||||
|
||||
parsed_response = response.json()
|
||||
|
||||
# The inference API has changed a couple of times, so we add some handling
|
||||
# to be robust to multiple response formats.
|
||||
if isinstance(parsed_response, dict):
|
||||
output_keys = ["data", "output", "outputs"]
|
||||
for key in output_keys:
|
||||
if key in parsed_response:
|
||||
output_item = parsed_response[key]
|
||||
break
|
||||
else:
|
||||
raise ValueError(
|
||||
f"No key data or output in response: {parsed_response}"
|
||||
)
|
||||
|
||||
if isinstance(output_item, list) and isinstance(output_item[0], list):
|
||||
embeddings = output_item
|
||||
else:
|
||||
embeddings = [output_item]
|
||||
else:
|
||||
raise ValueError(f"Unexpected response type: {parsed_response}")
|
||||
|
||||
except requests.exceptions.JSONDecodeError as e:
|
||||
raise ValueError(
|
||||
f"Error raised by inference API: {e}.\nResponse: {response.text}"
|
||||
)
|
||||
|
||||
return embeddings
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed documents using a MosaicML deployed instructor embedding model.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
instruction_pairs = [(self.embed_instruction, text) for text in texts]
|
||||
embeddings = self._embed(instruction_pairs)
|
||||
return embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed a query using a MosaicML deployed instructor embedding model.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
instruction_pair = (self.query_instruction, text)
|
||||
embedding = self._embed([instruction_pair])[0]
|
||||
return embedding
|
Reference in New Issue
Block a user