mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-05 21:12:48 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
@@ -0,0 +1,75 @@
|
||||
from typing import Any, List
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra
|
||||
|
||||
DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
|
||||
|
||||
|
||||
class TensorflowHubEmbeddings(BaseModel, Embeddings):
|
||||
"""TensorflowHub embedding models.
|
||||
|
||||
To use, you should have the ``tensorflow_text`` python package installed.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import TensorflowHubEmbeddings
|
||||
url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
|
||||
tf = TensorflowHubEmbeddings(model_url=url)
|
||||
"""
|
||||
|
||||
embed: Any #: :meta private:
|
||||
model_url: str = DEFAULT_MODEL_URL
|
||||
"""Model name to use."""
|
||||
|
||||
def __init__(self, **kwargs: Any):
|
||||
"""Initialize the tensorflow_hub and tensorflow_text."""
|
||||
super().__init__(**kwargs)
|
||||
try:
|
||||
import tensorflow_hub
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tensorflow-hub python package. "
|
||||
"Please install it with `pip install tensorflow-hub``."
|
||||
)
|
||||
try:
|
||||
import tensorflow_text # noqa
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tensorflow_text python package. "
|
||||
"Please install it with `pip install tensorflow_text``."
|
||||
)
|
||||
|
||||
self.embed = tensorflow_hub.load(self.model_url)
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Compute doc embeddings using a TensorflowHub embedding model.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
||||
embeddings = self.embed(texts).numpy()
|
||||
return embeddings.tolist()
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Compute query embeddings using a TensorflowHub embedding model.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
text = text.replace("\n", " ")
|
||||
embedding = self.embed([text]).numpy()[0]
|
||||
return embedding.tolist()
|
Reference in New Issue
Block a user