mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 19:12:42 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
56
libs/community/langchain_community/embeddings/vertexai.py
Normal file
56
libs/community/langchain_community/embeddings/vertexai.py
Normal file
@@ -0,0 +1,56 @@
|
||||
from typing import Dict, List
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import root_validator
|
||||
|
||||
from langchain_community.llms.vertexai import _VertexAICommon
|
||||
from langchain_community.utilities.vertexai import raise_vertex_import_error
|
||||
|
||||
|
||||
class VertexAIEmbeddings(_VertexAICommon, Embeddings):
|
||||
"""Google Cloud VertexAI embedding models."""
|
||||
|
||||
model_name: str = "textembedding-gecko"
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validates that the python package exists in environment."""
|
||||
cls._try_init_vertexai(values)
|
||||
try:
|
||||
from vertexai.language_models import TextEmbeddingModel
|
||||
except ImportError:
|
||||
raise_vertex_import_error()
|
||||
values["client"] = TextEmbeddingModel.from_pretrained(values["model_name"])
|
||||
return values
|
||||
|
||||
def embed_documents(
|
||||
self, texts: List[str], batch_size: int = 5
|
||||
) -> List[List[float]]:
|
||||
"""Embed a list of strings. Vertex AI currently
|
||||
sets a max batch size of 5 strings.
|
||||
|
||||
Args:
|
||||
texts: List[str] The list of strings to embed.
|
||||
batch_size: [int] The batch size of embeddings to send to the model
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = []
|
||||
for batch in range(0, len(texts), batch_size):
|
||||
text_batch = texts[batch : batch + batch_size]
|
||||
embeddings_batch = self.client.get_embeddings(text_batch)
|
||||
embeddings.extend([el.values for el in embeddings_batch])
|
||||
return embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed a text.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embedding for the text.
|
||||
"""
|
||||
embeddings = self.client.get_embeddings([text])
|
||||
return embeddings[0].values
|
Reference in New Issue
Block a user