mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-22 11:00:37 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
124
libs/community/langchain_community/embeddings/xinference.py
Normal file
124
libs/community/langchain_community/embeddings/xinference.py
Normal file
@@ -0,0 +1,124 @@
|
||||
"""Wrapper around Xinference embedding models."""
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
|
||||
|
||||
class XinferenceEmbeddings(Embeddings):
|
||||
|
||||
"""Xinference embedding models.
|
||||
|
||||
To use, you should have the xinference library installed:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install xinference
|
||||
|
||||
Check out: https://github.com/xorbitsai/inference
|
||||
To run, you need to start a Xinference supervisor on one server and Xinference workers on the other servers.
|
||||
|
||||
Example:
|
||||
To start a local instance of Xinference, run
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ xinference
|
||||
|
||||
You can also deploy Xinference in a distributed cluster. Here are the steps:
|
||||
|
||||
Starting the supervisor:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ xinference-supervisor
|
||||
|
||||
Starting the worker:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ xinference-worker
|
||||
|
||||
Then, launch a model using command line interface (CLI).
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ xinference launch -n orca -s 3 -q q4_0
|
||||
|
||||
It will return a model UID. Then you can use Xinference Embedding with LangChain.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import XinferenceEmbeddings
|
||||
|
||||
xinference = XinferenceEmbeddings(
|
||||
server_url="http://0.0.0.0:9997",
|
||||
model_uid = {model_uid} # replace model_uid with the model UID return from launching the model
|
||||
)
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
client: Any
|
||||
server_url: Optional[str]
|
||||
"""URL of the xinference server"""
|
||||
model_uid: Optional[str]
|
||||
"""UID of the launched model"""
|
||||
|
||||
def __init__(
|
||||
self, server_url: Optional[str] = None, model_uid: Optional[str] = None
|
||||
):
|
||||
try:
|
||||
from xinference.client import RESTfulClient
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Could not import RESTfulClient from xinference. Please install it"
|
||||
" with `pip install xinference`."
|
||||
) from e
|
||||
|
||||
super().__init__()
|
||||
|
||||
if server_url is None:
|
||||
raise ValueError("Please provide server URL")
|
||||
|
||||
if model_uid is None:
|
||||
raise ValueError("Please provide the model UID")
|
||||
|
||||
self.server_url = server_url
|
||||
|
||||
self.model_uid = model_uid
|
||||
|
||||
self.client = RESTfulClient(server_url)
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed a list of documents using Xinference.
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
|
||||
model = self.client.get_model(self.model_uid)
|
||||
|
||||
embeddings = [
|
||||
model.create_embedding(text)["data"][0]["embedding"] for text in texts
|
||||
]
|
||||
return [list(map(float, e)) for e in embeddings]
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed a query of documents using Xinference.
|
||||
Args:
|
||||
text: The text to embed.
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
|
||||
model = self.client.get_model(self.model_uid)
|
||||
|
||||
embedding_res = model.create_embedding(text)
|
||||
|
||||
embedding = embedding_res["data"][0]["embedding"]
|
||||
|
||||
return list(map(float, embedding))
|
Reference in New Issue
Block a user