mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-10 23:41:28 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
104
libs/community/langchain_community/llms/amazon_api_gateway.py
Normal file
104
libs/community/langchain_community/llms/amazon_api_gateway.py
Normal file
@@ -0,0 +1,104 @@
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
|
||||
import requests
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.llms import LLM
|
||||
from langchain_core.pydantic_v1 import Extra
|
||||
|
||||
from langchain_community.llms.utils import enforce_stop_tokens
|
||||
|
||||
|
||||
class ContentHandlerAmazonAPIGateway:
|
||||
"""Adapter to prepare the inputs from Langchain to a format
|
||||
that LLM model expects.
|
||||
|
||||
It also provides helper function to extract
|
||||
the generated text from the model response."""
|
||||
|
||||
@classmethod
|
||||
def transform_input(
|
||||
cls, prompt: str, model_kwargs: Dict[str, Any]
|
||||
) -> Dict[str, Any]:
|
||||
return {"inputs": prompt, "parameters": model_kwargs}
|
||||
|
||||
@classmethod
|
||||
def transform_output(cls, response: Any) -> str:
|
||||
return response.json()[0]["generated_text"]
|
||||
|
||||
|
||||
class AmazonAPIGateway(LLM):
|
||||
"""Amazon API Gateway to access LLM models hosted on AWS."""
|
||||
|
||||
api_url: str
|
||||
"""API Gateway URL"""
|
||||
|
||||
headers: Optional[Dict] = None
|
||||
"""API Gateway HTTP Headers to send, e.g. for authentication"""
|
||||
|
||||
model_kwargs: Optional[Dict] = None
|
||||
"""Keyword arguments to pass to the model."""
|
||||
|
||||
content_handler: ContentHandlerAmazonAPIGateway = ContentHandlerAmazonAPIGateway()
|
||||
"""The content handler class that provides an input and
|
||||
output transform functions to handle formats between LLM
|
||||
and the endpoint.
|
||||
"""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
return {
|
||||
**{"api_url": self.api_url, "headers": self.headers},
|
||||
**{"model_kwargs": _model_kwargs},
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "amazon_api_gateway"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call out to Amazon API Gateway model.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
response = se("Tell me a joke.")
|
||||
"""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
payload = self.content_handler.transform_input(prompt, _model_kwargs)
|
||||
|
||||
try:
|
||||
response = requests.post(
|
||||
self.api_url,
|
||||
headers=self.headers,
|
||||
json=payload,
|
||||
)
|
||||
text = self.content_handler.transform_output(response)
|
||||
|
||||
except Exception as error:
|
||||
raise ValueError(f"Error raised by the service: {error}")
|
||||
|
||||
if stop is not None:
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
|
||||
return text
|
Reference in New Issue
Block a user