mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 20:46:45 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
291
libs/community/langchain_community/llms/azureml_endpoint.py
Normal file
291
libs/community/langchain_community/llms/azureml_endpoint.py
Normal file
@@ -0,0 +1,291 @@
|
||||
import json
|
||||
import urllib.request
|
||||
import warnings
|
||||
from abc import abstractmethod
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.llms import LLM
|
||||
from langchain_core.pydantic_v1 import BaseModel, validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class AzureMLEndpointClient(object):
|
||||
"""AzureML Managed Endpoint client."""
|
||||
|
||||
def __init__(
|
||||
self, endpoint_url: str, endpoint_api_key: str, deployment_name: str = ""
|
||||
) -> None:
|
||||
"""Initialize the class."""
|
||||
if not endpoint_api_key or not endpoint_url:
|
||||
raise ValueError(
|
||||
"""A key/token and REST endpoint should
|
||||
be provided to invoke the endpoint"""
|
||||
)
|
||||
self.endpoint_url = endpoint_url
|
||||
self.endpoint_api_key = endpoint_api_key
|
||||
self.deployment_name = deployment_name
|
||||
|
||||
def call(self, body: bytes, **kwargs: Any) -> bytes:
|
||||
"""call."""
|
||||
|
||||
# The azureml-model-deployment header will force the request to go to a
|
||||
# specific deployment. Remove this header to have the request observe the
|
||||
# endpoint traffic rules.
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": ("Bearer " + self.endpoint_api_key),
|
||||
}
|
||||
if self.deployment_name != "":
|
||||
headers["azureml-model-deployment"] = self.deployment_name
|
||||
|
||||
req = urllib.request.Request(self.endpoint_url, body, headers)
|
||||
response = urllib.request.urlopen(req, timeout=kwargs.get("timeout", 50))
|
||||
result = response.read()
|
||||
return result
|
||||
|
||||
|
||||
class ContentFormatterBase:
|
||||
"""Transform request and response of AzureML endpoint to match with
|
||||
required schema.
|
||||
"""
|
||||
|
||||
"""
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
class ContentFormatter(ContentFormatterBase):
|
||||
content_type = "application/json"
|
||||
accepts = "application/json"
|
||||
|
||||
def format_request_payload(
|
||||
self,
|
||||
prompt: str,
|
||||
model_kwargs: Dict
|
||||
) -> bytes:
|
||||
input_str = json.dumps(
|
||||
{
|
||||
"inputs": {"input_string": [prompt]},
|
||||
"parameters": model_kwargs,
|
||||
}
|
||||
)
|
||||
return str.encode(input_str)
|
||||
|
||||
def format_response_payload(self, output: str) -> str:
|
||||
response_json = json.loads(output)
|
||||
return response_json[0]["0"]
|
||||
"""
|
||||
content_type: Optional[str] = "application/json"
|
||||
"""The MIME type of the input data passed to the endpoint"""
|
||||
|
||||
accepts: Optional[str] = "application/json"
|
||||
"""The MIME type of the response data returned from the endpoint"""
|
||||
|
||||
@staticmethod
|
||||
def escape_special_characters(prompt: str) -> str:
|
||||
"""Escapes any special characters in `prompt`"""
|
||||
escape_map = {
|
||||
"\\": "\\\\",
|
||||
'"': '\\"',
|
||||
"\b": "\\b",
|
||||
"\f": "\\f",
|
||||
"\n": "\\n",
|
||||
"\r": "\\r",
|
||||
"\t": "\\t",
|
||||
}
|
||||
|
||||
# Replace each occurrence of the specified characters with escaped versions
|
||||
for escape_sequence, escaped_sequence in escape_map.items():
|
||||
prompt = prompt.replace(escape_sequence, escaped_sequence)
|
||||
|
||||
return prompt
|
||||
|
||||
@abstractmethod
|
||||
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
||||
"""Formats the request body according to the input schema of
|
||||
the model. Returns bytes or seekable file like object in the
|
||||
format specified in the content_type request header.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def format_response_payload(self, output: bytes) -> str:
|
||||
"""Formats the response body according to the output
|
||||
schema of the model. Returns the data type that is
|
||||
received from the response.
|
||||
"""
|
||||
|
||||
|
||||
class GPT2ContentFormatter(ContentFormatterBase):
|
||||
"""Content handler for GPT2"""
|
||||
|
||||
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
||||
prompt = ContentFormatterBase.escape_special_characters(prompt)
|
||||
request_payload = json.dumps(
|
||||
{"inputs": {"input_string": [f'"{prompt}"']}, "parameters": model_kwargs}
|
||||
)
|
||||
return str.encode(request_payload)
|
||||
|
||||
def format_response_payload(self, output: bytes) -> str:
|
||||
return json.loads(output)[0]["0"]
|
||||
|
||||
|
||||
class OSSContentFormatter(GPT2ContentFormatter):
|
||||
"""Deprecated: Kept for backwards compatibility
|
||||
|
||||
Content handler for LLMs from the OSS catalog."""
|
||||
|
||||
content_formatter: Any = None
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
warnings.warn(
|
||||
"""`OSSContentFormatter` will be deprecated in the future.
|
||||
Please use `GPT2ContentFormatter` instead.
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
class HFContentFormatter(ContentFormatterBase):
|
||||
"""Content handler for LLMs from the HuggingFace catalog."""
|
||||
|
||||
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
||||
ContentFormatterBase.escape_special_characters(prompt)
|
||||
request_payload = json.dumps(
|
||||
{"inputs": [f'"{prompt}"'], "parameters": model_kwargs}
|
||||
)
|
||||
return str.encode(request_payload)
|
||||
|
||||
def format_response_payload(self, output: bytes) -> str:
|
||||
return json.loads(output)[0]["generated_text"]
|
||||
|
||||
|
||||
class DollyContentFormatter(ContentFormatterBase):
|
||||
"""Content handler for the Dolly-v2-12b model"""
|
||||
|
||||
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
||||
prompt = ContentFormatterBase.escape_special_characters(prompt)
|
||||
request_payload = json.dumps(
|
||||
{
|
||||
"input_data": {"input_string": [f'"{prompt}"']},
|
||||
"parameters": model_kwargs,
|
||||
}
|
||||
)
|
||||
return str.encode(request_payload)
|
||||
|
||||
def format_response_payload(self, output: bytes) -> str:
|
||||
return json.loads(output)[0]
|
||||
|
||||
|
||||
class LlamaContentFormatter(ContentFormatterBase):
|
||||
"""Content formatter for LLaMa"""
|
||||
|
||||
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
|
||||
"""Formats the request according to the chosen api"""
|
||||
prompt = ContentFormatterBase.escape_special_characters(prompt)
|
||||
request_payload = json.dumps(
|
||||
{
|
||||
"input_data": {
|
||||
"input_string": [f'"{prompt}"'],
|
||||
"parameters": model_kwargs,
|
||||
}
|
||||
}
|
||||
)
|
||||
return str.encode(request_payload)
|
||||
|
||||
def format_response_payload(self, output: bytes) -> str:
|
||||
"""Formats response"""
|
||||
return json.loads(output)[0]["0"]
|
||||
|
||||
|
||||
class AzureMLOnlineEndpoint(LLM, BaseModel):
|
||||
"""Azure ML Online Endpoint models.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
azure_llm = AzureMLOnlineEndpoint(
|
||||
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
|
||||
endpoint_api_key="my-api-key",
|
||||
content_formatter=content_formatter,
|
||||
)
|
||||
""" # noqa: E501
|
||||
|
||||
endpoint_url: str = ""
|
||||
"""URL of pre-existing Endpoint. Should be passed to constructor or specified as
|
||||
env var `AZUREML_ENDPOINT_URL`."""
|
||||
|
||||
endpoint_api_key: str = ""
|
||||
"""Authentication Key for Endpoint. Should be passed to constructor or specified as
|
||||
env var `AZUREML_ENDPOINT_API_KEY`."""
|
||||
|
||||
deployment_name: str = ""
|
||||
"""Deployment Name for Endpoint. NOT REQUIRED to call endpoint. Should be passed
|
||||
to constructor or specified as env var `AZUREML_DEPLOYMENT_NAME`."""
|
||||
|
||||
http_client: Any = None #: :meta private:
|
||||
|
||||
content_formatter: Any = None
|
||||
"""The content formatter that provides an input and output
|
||||
transform function to handle formats between the LLM and
|
||||
the endpoint"""
|
||||
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments to pass to the model."""
|
||||
|
||||
@validator("http_client", always=True, allow_reuse=True)
|
||||
@classmethod
|
||||
def validate_client(cls, field_value: Any, values: Dict) -> AzureMLEndpointClient:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
endpoint_key = get_from_dict_or_env(
|
||||
values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY"
|
||||
)
|
||||
endpoint_url = get_from_dict_or_env(
|
||||
values, "endpoint_url", "AZUREML_ENDPOINT_URL"
|
||||
)
|
||||
deployment_name = get_from_dict_or_env(
|
||||
values, "deployment_name", "AZUREML_DEPLOYMENT_NAME", ""
|
||||
)
|
||||
http_client = AzureMLEndpointClient(endpoint_url, endpoint_key, deployment_name)
|
||||
return http_client
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
return {
|
||||
**{"deployment_name": self.deployment_name},
|
||||
**{"model_kwargs": _model_kwargs},
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "azureml_endpoint"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call out to an AzureML Managed Online endpoint.
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
response = azureml_model("Tell me a joke.")
|
||||
"""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
|
||||
request_payload = self.content_formatter.format_request_payload(
|
||||
prompt, _model_kwargs
|
||||
)
|
||||
response_payload = self.http_client.call(request_payload, **kwargs)
|
||||
generated_text = self.content_formatter.format_response_payload(
|
||||
response_payload
|
||||
)
|
||||
return generated_text
|
Reference in New Issue
Block a user