mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-09 23:12:38 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
122
libs/community/langchain_community/llms/mlflow.py
Normal file
122
libs/community/langchain_community/llms/mlflow.py
Normal file
@@ -0,0 +1,122 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models import LLM
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, PrivateAttr
|
||||
|
||||
|
||||
# Ignoring type because below is valid pydantic code
|
||||
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
||||
class Params(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
||||
"""Parameters for MLflow"""
|
||||
|
||||
temperature: float = 0.0
|
||||
n: int = 1
|
||||
stop: Optional[List[str]] = None
|
||||
max_tokens: Optional[int] = None
|
||||
|
||||
|
||||
class Mlflow(LLM):
|
||||
"""Wrapper around completions LLMs in MLflow.
|
||||
|
||||
To use, you should have the `mlflow[genai]` python package installed.
|
||||
For more information, see https://mlflow.org/docs/latest/llms/deployments/server.html.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.llms import Mlflow
|
||||
|
||||
completions = Mlflow(
|
||||
target_uri="http://localhost:5000",
|
||||
endpoint="test",
|
||||
params={"temperature": 0.1}
|
||||
)
|
||||
"""
|
||||
|
||||
endpoint: str
|
||||
"""The endpoint to use."""
|
||||
target_uri: str
|
||||
"""The target URI to use."""
|
||||
temperature: float = 0.0
|
||||
"""The sampling temperature."""
|
||||
n: int = 1
|
||||
"""The number of completion choices to generate."""
|
||||
stop: Optional[List[str]] = None
|
||||
"""The stop sequence."""
|
||||
max_tokens: Optional[int] = None
|
||||
"""The maximum number of tokens to generate."""
|
||||
extra_params: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Any extra parameters to pass to the endpoint."""
|
||||
|
||||
"""Extra parameters such as `temperature`."""
|
||||
_client: Any = PrivateAttr()
|
||||
|
||||
def __init__(self, **kwargs: Any):
|
||||
super().__init__(**kwargs)
|
||||
self._validate_uri()
|
||||
try:
|
||||
from mlflow.deployments import get_deploy_client
|
||||
|
||||
self._client = get_deploy_client(self.target_uri)
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Failed to create the client. "
|
||||
"Please run `pip install mlflow[genai]` to install "
|
||||
"required dependencies."
|
||||
) from e
|
||||
|
||||
def _validate_uri(self) -> None:
|
||||
if self.target_uri == "databricks":
|
||||
return
|
||||
allowed = ["http", "https", "databricks"]
|
||||
if urlparse(self.target_uri).scheme not in allowed:
|
||||
raise ValueError(
|
||||
f"Invalid target URI: {self.target_uri}. "
|
||||
f"The scheme must be one of {allowed}."
|
||||
)
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"target_uri": self.target_uri,
|
||||
"endpoint": self.endpoint,
|
||||
"temperature": self.temperature,
|
||||
"n": self.n,
|
||||
"stop": self.stop,
|
||||
"max_tokens": self.max_tokens,
|
||||
"extra_params": self.extra_params,
|
||||
}
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
return self._default_params
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
data: Dict[str, Any] = {
|
||||
"prompt": prompt,
|
||||
"temperature": self.temperature,
|
||||
"n": self.n,
|
||||
**self.extra_params,
|
||||
**kwargs,
|
||||
}
|
||||
if stop := self.stop or stop:
|
||||
data["stop"] = stop
|
||||
if self.max_tokens is not None:
|
||||
data["max_tokens"] = self.max_tokens
|
||||
|
||||
resp = self._client.predict(endpoint=self.endpoint, inputs=data)
|
||||
return resp["choices"][0]["text"]
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "mlflow"
|
Reference in New Issue
Block a user