mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 14:31:55 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
240
libs/community/langchain_community/llms/pai_eas_endpoint.py
Normal file
240
libs/community/langchain_community/llms/pai_eas_endpoint.py
Normal file
@@ -0,0 +1,240 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Dict, Iterator, List, Mapping, Optional
|
||||
|
||||
import requests
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.llms import LLM
|
||||
from langchain_core.outputs import GenerationChunk
|
||||
from langchain_core.pydantic_v1 import root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
from langchain_community.llms.utils import enforce_stop_tokens
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PaiEasEndpoint(LLM):
|
||||
"""Langchain LLM class to help to access eass llm service.
|
||||
|
||||
To use this endpoint, must have a deployed eas chat llm service on PAI AliCloud.
|
||||
One can set the environment variable ``eas_service_url`` and ``eas_service_token``.
|
||||
The environment variables can set with your eas service url and service token.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.llms.pai_eas_endpoint import PaiEasEndpoint
|
||||
eas_chat_endpoint = PaiEasChatEndpoint(
|
||||
eas_service_url="your_service_url",
|
||||
eas_service_token="your_service_token"
|
||||
)
|
||||
"""
|
||||
|
||||
"""PAI-EAS Service URL"""
|
||||
eas_service_url: str
|
||||
|
||||
"""PAI-EAS Service TOKEN"""
|
||||
eas_service_token: str
|
||||
|
||||
"""PAI-EAS Service Infer Params"""
|
||||
max_new_tokens: Optional[int] = 512
|
||||
temperature: Optional[float] = 0.95
|
||||
top_p: Optional[float] = 0.1
|
||||
top_k: Optional[int] = 0
|
||||
stop_sequences: Optional[List[str]] = None
|
||||
|
||||
"""Enable stream chat mode."""
|
||||
streaming: bool = False
|
||||
|
||||
"""Key/value arguments to pass to the model. Reserved for future use"""
|
||||
model_kwargs: Optional[dict] = None
|
||||
|
||||
version: Optional[str] = "2.0"
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["eas_service_url"] = get_from_dict_or_env(
|
||||
values, "eas_service_url", "EAS_SERVICE_URL"
|
||||
)
|
||||
values["eas_service_token"] = get_from_dict_or_env(
|
||||
values, "eas_service_token", "EAS_SERVICE_TOKEN"
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "pai_eas_endpoint"
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling Cohere API."""
|
||||
return {
|
||||
"max_new_tokens": self.max_new_tokens,
|
||||
"temperature": self.temperature,
|
||||
"top_k": self.top_k,
|
||||
"top_p": self.top_p,
|
||||
"stop_sequences": [],
|
||||
}
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
return {
|
||||
"eas_service_url": self.eas_service_url,
|
||||
"eas_service_token": self.eas_service_token,
|
||||
**_model_kwargs,
|
||||
}
|
||||
|
||||
def _invocation_params(
|
||||
self, stop_sequences: Optional[List[str]], **kwargs: Any
|
||||
) -> dict:
|
||||
params = self._default_params
|
||||
if self.stop_sequences is not None and stop_sequences is not None:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
elif self.stop_sequences is not None:
|
||||
params["stop"] = self.stop_sequences
|
||||
else:
|
||||
params["stop"] = stop_sequences
|
||||
if self.model_kwargs:
|
||||
params.update(self.model_kwargs)
|
||||
return {**params, **kwargs}
|
||||
|
||||
@staticmethod
|
||||
def _process_response(
|
||||
response: Any, stop: Optional[List[str]], version: Optional[str]
|
||||
) -> str:
|
||||
if version == "1.0":
|
||||
text = response
|
||||
else:
|
||||
text = response["response"]
|
||||
|
||||
if stop:
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
return "".join(text)
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
params = self._invocation_params(stop, **kwargs)
|
||||
prompt = prompt.strip()
|
||||
response = None
|
||||
try:
|
||||
if self.streaming:
|
||||
completion = ""
|
||||
for chunk in self._stream(prompt, stop, run_manager, **params):
|
||||
completion += chunk.text
|
||||
return completion
|
||||
else:
|
||||
response = self._call_eas(prompt, params)
|
||||
_stop = params.get("stop")
|
||||
return self._process_response(response, _stop, self.version)
|
||||
except Exception as error:
|
||||
raise ValueError(f"Error raised by the service: {error}")
|
||||
|
||||
def _call_eas(self, prompt: str = "", params: Dict = {}) -> Any:
|
||||
"""Generate text from the eas service."""
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"{self.eas_service_token}",
|
||||
}
|
||||
if self.version == "1.0":
|
||||
body = {
|
||||
"input_ids": f"{prompt}",
|
||||
}
|
||||
else:
|
||||
body = {
|
||||
"prompt": f"{prompt}",
|
||||
}
|
||||
|
||||
# add params to body
|
||||
for key, value in params.items():
|
||||
body[key] = value
|
||||
|
||||
# make request
|
||||
response = requests.post(self.eas_service_url, headers=headers, json=body)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise Exception(
|
||||
f"Request failed with status code {response.status_code}"
|
||||
f" and message {response.text}"
|
||||
)
|
||||
|
||||
try:
|
||||
return json.loads(response.text)
|
||||
except Exception as e:
|
||||
if isinstance(e, json.decoder.JSONDecodeError):
|
||||
return response.text
|
||||
raise e
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[GenerationChunk]:
|
||||
invocation_params = self._invocation_params(stop, **kwargs)
|
||||
|
||||
headers = {
|
||||
"User-Agent": "Test Client",
|
||||
"Authorization": f"{self.eas_service_token}",
|
||||
}
|
||||
|
||||
if self.version == "1.0":
|
||||
pload = {"input_ids": prompt, **invocation_params}
|
||||
response = requests.post(
|
||||
self.eas_service_url, headers=headers, json=pload, stream=True
|
||||
)
|
||||
|
||||
res = GenerationChunk(text=response.text)
|
||||
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(res.text)
|
||||
|
||||
# yield text, if any
|
||||
yield res
|
||||
else:
|
||||
pload = {"prompt": prompt, "use_stream_chat": "True", **invocation_params}
|
||||
|
||||
response = requests.post(
|
||||
self.eas_service_url, headers=headers, json=pload, stream=True
|
||||
)
|
||||
|
||||
for chunk in response.iter_lines(
|
||||
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||||
):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["response"]
|
||||
# identify stop sequence in generated text, if any
|
||||
stop_seq_found: Optional[str] = None
|
||||
for stop_seq in invocation_params["stop"]:
|
||||
if stop_seq in output:
|
||||
stop_seq_found = stop_seq
|
||||
|
||||
# identify text to yield
|
||||
text: Optional[str] = None
|
||||
if stop_seq_found:
|
||||
text = output[: output.index(stop_seq_found)]
|
||||
else:
|
||||
text = output
|
||||
|
||||
# yield text, if any
|
||||
if text:
|
||||
res = GenerationChunk(text=text)
|
||||
yield res
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(res.text)
|
||||
|
||||
# break if stop sequence found
|
||||
if stop_seq_found:
|
||||
break
|
Reference in New Issue
Block a user