mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-09 15:03:21 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
153
libs/community/langchain_community/llms/petals.py
Normal file
153
libs/community/langchain_community/llms/petals.py
Normal file
@@ -0,0 +1,153 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.llms import LLM
|
||||
from langchain_core.pydantic_v1 import Extra, Field, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
from langchain_community.llms.utils import enforce_stop_tokens
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Petals(LLM):
|
||||
"""Petals Bloom models.
|
||||
|
||||
To use, you should have the ``petals`` python package installed, and the
|
||||
environment variable ``HUGGINGFACE_API_KEY`` set with your API key.
|
||||
|
||||
Any parameters that are valid to be passed to the call can be passed
|
||||
in, even if not explicitly saved on this class.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.llms import petals
|
||||
petals = Petals()
|
||||
|
||||
"""
|
||||
|
||||
client: Any
|
||||
"""The client to use for the API calls."""
|
||||
|
||||
tokenizer: Any
|
||||
"""The tokenizer to use for the API calls."""
|
||||
|
||||
model_name: str = "bigscience/bloom-petals"
|
||||
"""The model to use."""
|
||||
|
||||
temperature: float = 0.7
|
||||
"""What sampling temperature to use"""
|
||||
|
||||
max_new_tokens: int = 256
|
||||
"""The maximum number of new tokens to generate in the completion."""
|
||||
|
||||
top_p: float = 0.9
|
||||
"""The cumulative probability for top-p sampling."""
|
||||
|
||||
top_k: Optional[int] = None
|
||||
"""The number of highest probability vocabulary tokens
|
||||
to keep for top-k-filtering."""
|
||||
|
||||
do_sample: bool = True
|
||||
"""Whether or not to use sampling; use greedy decoding otherwise."""
|
||||
|
||||
max_length: Optional[int] = None
|
||||
"""The maximum length of the sequence to be generated."""
|
||||
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `create` call
|
||||
not explicitly specified."""
|
||||
|
||||
huggingface_api_key: Optional[str] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic config."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||||
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name not in all_required_field_names:
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
logger.warning(
|
||||
f"""WARNING! {field_name} is not default parameter.
|
||||
{field_name} was transferred to model_kwargs.
|
||||
Please confirm that {field_name} is what you intended."""
|
||||
)
|
||||
extra[field_name] = values.pop(field_name)
|
||||
values["model_kwargs"] = extra
|
||||
return values
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
huggingface_api_key = get_from_dict_or_env(
|
||||
values, "huggingface_api_key", "HUGGINGFACE_API_KEY"
|
||||
)
|
||||
try:
|
||||
from petals import AutoDistributedModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
model_name = values["model_name"]
|
||||
values["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
|
||||
values["client"] = AutoDistributedModelForCausalLM.from_pretrained(
|
||||
model_name
|
||||
)
|
||||
values["huggingface_api_key"] = huggingface_api_key
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import transformers or petals python package."
|
||||
"Please install with `pip install -U transformers petals`."
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling Petals API."""
|
||||
normal_params = {
|
||||
"temperature": self.temperature,
|
||||
"max_new_tokens": self.max_new_tokens,
|
||||
"top_p": self.top_p,
|
||||
"top_k": self.top_k,
|
||||
"do_sample": self.do_sample,
|
||||
"max_length": self.max_length,
|
||||
}
|
||||
return {**normal_params, **self.model_kwargs}
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "petals"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call the Petals API."""
|
||||
params = self._default_params
|
||||
params = {**params, **kwargs}
|
||||
inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"]
|
||||
outputs = self.client.generate(inputs, **params)
|
||||
text = self.tokenizer.decode(outputs[0])
|
||||
if stop is not None:
|
||||
# I believe this is required since the stop tokens
|
||||
# are not enforced by the model parameters
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
return text
|
Reference in New Issue
Block a user