mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-05 04:55:14 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
115
libs/community/langchain_community/llms/pipelineai.py
Normal file
115
libs/community/langchain_community/llms/pipelineai.py
Normal file
@@ -0,0 +1,115 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.llms import LLM
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
from langchain_community.llms.utils import enforce_stop_tokens
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PipelineAI(LLM, BaseModel):
|
||||
"""PipelineAI large language models.
|
||||
|
||||
To use, you should have the ``pipeline-ai`` python package installed,
|
||||
and the environment variable ``PIPELINE_API_KEY`` set with your API key.
|
||||
|
||||
Any parameters that are valid to be passed to the call can be passed
|
||||
in, even if not explicitly saved on this class.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.llms import PipelineAI
|
||||
pipeline = PipelineAI(pipeline_key="")
|
||||
"""
|
||||
|
||||
pipeline_key: str = ""
|
||||
"""The id or tag of the target pipeline"""
|
||||
|
||||
pipeline_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any pipeline parameters valid for `create` call not
|
||||
explicitly specified."""
|
||||
|
||||
pipeline_api_key: Optional[str] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic config."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||||
|
||||
extra = values.get("pipeline_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name not in all_required_field_names:
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
logger.warning(
|
||||
f"""{field_name} was transferred to pipeline_kwargs.
|
||||
Please confirm that {field_name} is what you intended."""
|
||||
)
|
||||
extra[field_name] = values.pop(field_name)
|
||||
values["pipeline_kwargs"] = extra
|
||||
return values
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
pipeline_api_key = get_from_dict_or_env(
|
||||
values, "pipeline_api_key", "PIPELINE_API_KEY"
|
||||
)
|
||||
values["pipeline_api_key"] = pipeline_api_key
|
||||
return values
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {
|
||||
**{"pipeline_key": self.pipeline_key},
|
||||
**{"pipeline_kwargs": self.pipeline_kwargs},
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "pipeline_ai"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call to Pipeline Cloud endpoint."""
|
||||
try:
|
||||
from pipeline import PipelineCloud
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import pipeline-ai python package. "
|
||||
"Please install it with `pip install pipeline-ai`."
|
||||
)
|
||||
client = PipelineCloud(token=self.pipeline_api_key)
|
||||
params = self.pipeline_kwargs or {}
|
||||
params = {**params, **kwargs}
|
||||
|
||||
run = client.run_pipeline(self.pipeline_key, [prompt, params])
|
||||
try:
|
||||
text = run.result_preview[0][0]
|
||||
except AttributeError:
|
||||
raise AttributeError(
|
||||
f"A pipeline run should have a `result_preview` attribute."
|
||||
f"Run was: {run}"
|
||||
)
|
||||
if stop is not None:
|
||||
# I believe this is required since the stop tokens
|
||||
# are not enforced by the pipeline parameters
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
return text
|
Reference in New Issue
Block a user