mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-11 16:01:33 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
130
libs/community/langchain_community/llms/predictionguard.py
Normal file
130
libs/community/langchain_community/llms/predictionguard.py
Normal file
@@ -0,0 +1,130 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.llms import LLM
|
||||
from langchain_core.pydantic_v1 import Extra, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
from langchain_community.llms.utils import enforce_stop_tokens
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PredictionGuard(LLM):
|
||||
"""Prediction Guard large language models.
|
||||
|
||||
To use, you should have the ``predictionguard`` python package installed, and the
|
||||
environment variable ``PREDICTIONGUARD_TOKEN`` set with your access token, or pass
|
||||
it as a named parameter to the constructor. To use Prediction Guard's API along
|
||||
with OpenAI models, set the environment variable ``OPENAI_API_KEY`` with your
|
||||
OpenAI API key as well.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
pgllm = PredictionGuard(model="MPT-7B-Instruct",
|
||||
token="my-access-token",
|
||||
output={
|
||||
"type": "boolean"
|
||||
})
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
model: Optional[str] = "MPT-7B-Instruct"
|
||||
"""Model name to use."""
|
||||
|
||||
output: Optional[Dict[str, Any]] = None
|
||||
"""The output type or structure for controlling the LLM output."""
|
||||
|
||||
max_tokens: int = 256
|
||||
"""Denotes the number of tokens to predict per generation."""
|
||||
|
||||
temperature: float = 0.75
|
||||
"""A non-negative float that tunes the degree of randomness in generation."""
|
||||
|
||||
token: Optional[str] = None
|
||||
"""Your Prediction Guard access token."""
|
||||
|
||||
stop: Optional[List[str]] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that the access token and python package exists in environment."""
|
||||
token = get_from_dict_or_env(values, "token", "PREDICTIONGUARD_TOKEN")
|
||||
try:
|
||||
import predictionguard as pg
|
||||
|
||||
values["client"] = pg.Client(token=token)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import predictionguard python package. "
|
||||
"Please install it with `pip install predictionguard`."
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling the Prediction Guard API."""
|
||||
return {
|
||||
"max_tokens": self.max_tokens,
|
||||
"temperature": self.temperature,
|
||||
}
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model": self.model}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "predictionguard"
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call out to Prediction Guard's model API.
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
response = pgllm("Tell me a joke.")
|
||||
"""
|
||||
import predictionguard as pg
|
||||
|
||||
params = self._default_params
|
||||
if self.stop is not None and stop is not None:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
elif self.stop is not None:
|
||||
params["stop_sequences"] = self.stop
|
||||
else:
|
||||
params["stop_sequences"] = stop
|
||||
|
||||
response = pg.Completion.create(
|
||||
model=self.model,
|
||||
prompt=prompt,
|
||||
output=self.output,
|
||||
temperature=params["temperature"],
|
||||
max_tokens=params["max_tokens"],
|
||||
**kwargs,
|
||||
)
|
||||
text = response["choices"][0]["text"]
|
||||
|
||||
# If stop tokens are provided, Prediction Guard's endpoint returns them.
|
||||
# In order to make this consistent with other endpoints, we strip them.
|
||||
if stop is not None or self.stop is not None:
|
||||
text = enforce_stop_tokens(text, params["stop_sequences"])
|
||||
|
||||
return text
|
Reference in New Issue
Block a user