mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-16 23:13:31 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
103
libs/community/langchain_community/retrievers/bm25.py
Normal file
103
libs/community/langchain_community/retrievers/bm25.py
Normal file
@@ -0,0 +1,103 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
|
||||
def default_preprocessing_func(text: str) -> List[str]:
|
||||
return text.split()
|
||||
|
||||
|
||||
class BM25Retriever(BaseRetriever):
|
||||
"""`BM25` retriever without Elasticsearch."""
|
||||
|
||||
vectorizer: Any
|
||||
""" BM25 vectorizer."""
|
||||
docs: List[Document]
|
||||
""" List of documents."""
|
||||
k: int = 4
|
||||
""" Number of documents to return."""
|
||||
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func
|
||||
""" Preprocessing function to use on the text before BM25 vectorization."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[Iterable[dict]] = None,
|
||||
bm25_params: Optional[Dict[str, Any]] = None,
|
||||
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
|
||||
**kwargs: Any,
|
||||
) -> BM25Retriever:
|
||||
"""
|
||||
Create a BM25Retriever from a list of texts.
|
||||
Args:
|
||||
texts: A list of texts to vectorize.
|
||||
metadatas: A list of metadata dicts to associate with each text.
|
||||
bm25_params: Parameters to pass to the BM25 vectorizer.
|
||||
preprocess_func: A function to preprocess each text before vectorization.
|
||||
**kwargs: Any other arguments to pass to the retriever.
|
||||
|
||||
Returns:
|
||||
A BM25Retriever instance.
|
||||
"""
|
||||
try:
|
||||
from rank_bm25 import BM25Okapi
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import rank_bm25, please install with `pip install "
|
||||
"rank_bm25`."
|
||||
)
|
||||
|
||||
texts_processed = [preprocess_func(t) for t in texts]
|
||||
bm25_params = bm25_params or {}
|
||||
vectorizer = BM25Okapi(texts_processed, **bm25_params)
|
||||
metadatas = metadatas or ({} for _ in texts)
|
||||
docs = [Document(page_content=t, metadata=m) for t, m in zip(texts, metadatas)]
|
||||
return cls(
|
||||
vectorizer=vectorizer, docs=docs, preprocess_func=preprocess_func, **kwargs
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_documents(
|
||||
cls,
|
||||
documents: Iterable[Document],
|
||||
*,
|
||||
bm25_params: Optional[Dict[str, Any]] = None,
|
||||
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
|
||||
**kwargs: Any,
|
||||
) -> BM25Retriever:
|
||||
"""
|
||||
Create a BM25Retriever from a list of Documents.
|
||||
Args:
|
||||
documents: A list of Documents to vectorize.
|
||||
bm25_params: Parameters to pass to the BM25 vectorizer.
|
||||
preprocess_func: A function to preprocess each text before vectorization.
|
||||
**kwargs: Any other arguments to pass to the retriever.
|
||||
|
||||
Returns:
|
||||
A BM25Retriever instance.
|
||||
"""
|
||||
texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents))
|
||||
return cls.from_texts(
|
||||
texts=texts,
|
||||
bm25_params=bm25_params,
|
||||
metadatas=metadatas,
|
||||
preprocess_func=preprocess_func,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _get_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||||
) -> List[Document]:
|
||||
processed_query = self.preprocess_func(query)
|
||||
return_docs = self.vectorizer.get_top_n(processed_query, self.docs, n=self.k)
|
||||
return return_docs
|
Reference in New Issue
Block a user