mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-12 12:59:07 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
311
libs/community/langchain_community/vectorstores/meilisearch.py
Normal file
311
libs/community/langchain_community/vectorstores/meilisearch.py
Normal file
@@ -0,0 +1,311 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type
|
||||
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.utils import get_from_env
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from meilisearch import Client
|
||||
|
||||
|
||||
def _create_client(
|
||||
client: Optional[Client] = None,
|
||||
url: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
) -> Client:
|
||||
try:
|
||||
import meilisearch
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import meilisearch python package. "
|
||||
"Please install it with `pip install meilisearch`."
|
||||
)
|
||||
if not client:
|
||||
url = url or get_from_env("url", "MEILI_HTTP_ADDR")
|
||||
try:
|
||||
api_key = api_key or get_from_env("api_key", "MEILI_MASTER_KEY")
|
||||
except Exception:
|
||||
pass
|
||||
client = meilisearch.Client(url=url, api_key=api_key)
|
||||
elif not isinstance(client, meilisearch.Client):
|
||||
raise ValueError(
|
||||
f"client should be an instance of meilisearch.Client, "
|
||||
f"got {type(client)}"
|
||||
)
|
||||
try:
|
||||
client.version()
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Failed to connect to Meilisearch: {e}")
|
||||
return client
|
||||
|
||||
|
||||
class Meilisearch(VectorStore):
|
||||
"""`Meilisearch` vector store.
|
||||
|
||||
To use this, you need to have `meilisearch` python package installed,
|
||||
and a running Meilisearch instance.
|
||||
|
||||
To learn more about Meilisearch Python, refer to the in-depth
|
||||
Meilisearch Python documentation: https://meilisearch.github.io/meilisearch-python/.
|
||||
|
||||
See the following documentation for how to run a Meilisearch instance:
|
||||
https://www.meilisearch.com/docs/learn/getting_started/quick_start.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.vectorstores import Meilisearch
|
||||
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
||||
import meilisearch
|
||||
|
||||
# api_key is optional; provide it if your meilisearch instance requires it
|
||||
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
|
||||
embeddings = OpenAIEmbeddings()
|
||||
vectorstore = Meilisearch(
|
||||
embedding=embeddings,
|
||||
client=client,
|
||||
index_name='langchain_demo',
|
||||
text_key='text')
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding: Embeddings,
|
||||
client: Optional[Client] = None,
|
||||
url: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
index_name: str = "langchain-demo",
|
||||
text_key: str = "text",
|
||||
metadata_key: str = "metadata",
|
||||
):
|
||||
"""Initialize with Meilisearch client."""
|
||||
client = _create_client(client=client, url=url, api_key=api_key)
|
||||
|
||||
self._client = client
|
||||
self._index_name = index_name
|
||||
self._embedding = embedding
|
||||
self._text_key = text_key
|
||||
self._metadata_key = metadata_key
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embedding and add them to the vector store.
|
||||
|
||||
Args:
|
||||
texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
|
||||
metadatas (Optional[List[dict]]): Optional list of metadata.
|
||||
Defaults to None.
|
||||
ids Optional[List[str]]: Optional list of IDs.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[str]: List of IDs of the texts added to the vectorstore.
|
||||
"""
|
||||
texts = list(texts)
|
||||
|
||||
# Embed and create the documents
|
||||
docs = []
|
||||
if ids is None:
|
||||
ids = [uuid.uuid4().hex for _ in texts]
|
||||
if metadatas is None:
|
||||
metadatas = [{} for _ in texts]
|
||||
embedding_vectors = self._embedding.embed_documents(texts)
|
||||
|
||||
for i, text in enumerate(texts):
|
||||
id = ids[i]
|
||||
metadata = metadatas[i]
|
||||
metadata[self._text_key] = text
|
||||
embedding = embedding_vectors[i]
|
||||
docs.append(
|
||||
{
|
||||
"id": id,
|
||||
"_vectors": embedding,
|
||||
f"{self._metadata_key}": metadata,
|
||||
}
|
||||
)
|
||||
|
||||
# Send to Meilisearch
|
||||
self._client.index(str(self._index_name)).add_documents(docs)
|
||||
return ids
|
||||
|
||||
def similarity_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return meilisearch documents most similar to the query.
|
||||
|
||||
Args:
|
||||
query (str): Query text for which to find similar documents.
|
||||
k (int): Number of documents to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[Document]: List of Documents most similar to the query
|
||||
text and score for each.
|
||||
"""
|
||||
docs_and_scores = self.similarity_search_with_score(
|
||||
query=query,
|
||||
k=k,
|
||||
filter=filter,
|
||||
kwargs=kwargs,
|
||||
)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
|
||||
def similarity_search_with_score(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return meilisearch documents most similar to the query, along with scores.
|
||||
|
||||
Args:
|
||||
query (str): Query text for which to find similar documents.
|
||||
k (int): Number of documents to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[Document]: List of Documents most similar to the query
|
||||
text and score for each.
|
||||
"""
|
||||
_query = self._embedding.embed_query(query)
|
||||
|
||||
docs = self.similarity_search_by_vector_with_scores(
|
||||
embedding=_query,
|
||||
k=k,
|
||||
filter=filter,
|
||||
kwargs=kwargs,
|
||||
)
|
||||
return docs
|
||||
|
||||
def similarity_search_by_vector_with_scores(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return meilisearch documents most similar to embedding vector.
|
||||
|
||||
Args:
|
||||
embedding (List[float]): Embedding to look up similar documents.
|
||||
k (int): Number of documents to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[Document]: List of Documents most similar to the query
|
||||
vector and score for each.
|
||||
"""
|
||||
docs = []
|
||||
results = self._client.index(str(self._index_name)).search(
|
||||
"", {"vector": embedding, "limit": k, "filter": filter}
|
||||
)
|
||||
|
||||
for result in results["hits"]:
|
||||
metadata = result[self._metadata_key]
|
||||
if self._text_key in metadata:
|
||||
text = metadata.pop(self._text_key)
|
||||
semantic_score = result["_semanticScore"]
|
||||
docs.append(
|
||||
(Document(page_content=text, metadata=metadata), semantic_score)
|
||||
)
|
||||
|
||||
return docs
|
||||
|
||||
def similarity_search_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return meilisearch documents most similar to embedding vector.
|
||||
|
||||
Args:
|
||||
embedding (List[float]): Embedding to look up similar documents.
|
||||
k (int): Number of documents to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[Document]: List of Documents most similar to the query
|
||||
vector and score for each.
|
||||
"""
|
||||
docs = self.similarity_search_by_vector_with_scores(
|
||||
embedding=embedding,
|
||||
k=k,
|
||||
filter=filter,
|
||||
kwargs=kwargs,
|
||||
)
|
||||
return [doc for doc, _ in docs]
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls: Type[Meilisearch],
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
client: Optional[Client] = None,
|
||||
url: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
index_name: str = "langchain-demo",
|
||||
ids: Optional[List[str]] = None,
|
||||
text_key: Optional[str] = "text",
|
||||
metadata_key: Optional[str] = "metadata",
|
||||
**kwargs: Any,
|
||||
) -> Meilisearch:
|
||||
"""Construct Meilisearch wrapper from raw documents.
|
||||
|
||||
This is a user-friendly interface that:
|
||||
1. Embeds documents.
|
||||
2. Adds the documents to a provided Meilisearch index.
|
||||
|
||||
This is intended to be a quick way to get started.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.vectorstores import Meilisearch
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
import meilisearch
|
||||
|
||||
# The environment should be the one specified next to the API key
|
||||
# in your Meilisearch console
|
||||
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
|
||||
embeddings = OpenAIEmbeddings()
|
||||
docsearch = Meilisearch.from_texts(
|
||||
client=client,
|
||||
embeddings=embeddings,
|
||||
)
|
||||
"""
|
||||
client = _create_client(client=client, url=url, api_key=api_key)
|
||||
|
||||
vectorstore = cls(
|
||||
embedding=embedding,
|
||||
client=client,
|
||||
index_name=index_name,
|
||||
)
|
||||
vectorstore.add_texts(
|
||||
texts=texts,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
text_key=text_key,
|
||||
metadata_key=metadata_key,
|
||||
)
|
||||
return vectorstore
|
Reference in New Issue
Block a user