mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 11:02:37 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
544
libs/community/langchain_community/vectorstores/scann.py
Normal file
544
libs/community/langchain_community/vectorstores/scann.py
Normal file
@@ -0,0 +1,544 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import operator
|
||||
import pickle
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
|
||||
from langchain_community.docstore.base import AddableMixin, Docstore
|
||||
from langchain_community.docstore.in_memory import InMemoryDocstore
|
||||
from langchain_community.vectorstores.utils import DistanceStrategy
|
||||
|
||||
|
||||
def normalize(x: np.ndarray) -> np.ndarray:
|
||||
"""Normalize vectors to unit length."""
|
||||
x /= np.clip(np.linalg.norm(x, axis=-1, keepdims=True), 1e-12, None)
|
||||
return x
|
||||
|
||||
|
||||
def dependable_scann_import() -> Any:
|
||||
"""
|
||||
Import `scann` if available, otherwise raise error.
|
||||
"""
|
||||
try:
|
||||
import scann
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import scann python package. "
|
||||
"Please install it with `pip install scann` "
|
||||
)
|
||||
return scann
|
||||
|
||||
|
||||
class ScaNN(VectorStore):
|
||||
"""`ScaNN` vector store.
|
||||
|
||||
To use, you should have the ``scann`` python package installed.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||
from langchain_community.vectorstores import ScaNN
|
||||
|
||||
db = ScaNN.from_texts(
|
||||
['foo', 'bar', 'barz', 'qux'],
|
||||
HuggingFaceEmbeddings())
|
||||
db.similarity_search('foo?', k=1)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding: Embeddings,
|
||||
index: Any,
|
||||
docstore: Docstore,
|
||||
index_to_docstore_id: Dict[int, str],
|
||||
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
||||
normalize_L2: bool = False,
|
||||
distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN_DISTANCE,
|
||||
scann_config: Optional[str] = None,
|
||||
):
|
||||
"""Initialize with necessary components."""
|
||||
self.embedding = embedding
|
||||
self.index = index
|
||||
self.docstore = docstore
|
||||
self.index_to_docstore_id = index_to_docstore_id
|
||||
self.distance_strategy = distance_strategy
|
||||
self.override_relevance_score_fn = relevance_score_fn
|
||||
self._normalize_L2 = normalize_L2
|
||||
self._scann_config = scann_config
|
||||
|
||||
def __add(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
embeddings: Iterable[List[float]],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
if not isinstance(self.docstore, AddableMixin):
|
||||
raise ValueError(
|
||||
"If trying to add texts, the underlying docstore should support "
|
||||
f"adding items, which {self.docstore} does not"
|
||||
)
|
||||
raise NotImplementedError("Updates are not available in ScaNN, yet.")
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the vectorstore.
|
||||
|
||||
Args:
|
||||
texts: Iterable of strings to add to the vectorstore.
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
ids: Optional list of unique IDs.
|
||||
|
||||
Returns:
|
||||
List of ids from adding the texts into the vectorstore.
|
||||
"""
|
||||
# Embed and create the documents.
|
||||
embeddings = self.embedding.embed_documents(list(texts))
|
||||
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids, **kwargs)
|
||||
|
||||
def add_embeddings(
|
||||
self,
|
||||
text_embeddings: Iterable[Tuple[str, List[float]]],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the vectorstore.
|
||||
|
||||
Args:
|
||||
text_embeddings: Iterable pairs of string and embedding to
|
||||
add to the vectorstore.
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
ids: Optional list of unique IDs.
|
||||
|
||||
Returns:
|
||||
List of ids from adding the texts into the vectorstore.
|
||||
"""
|
||||
if not isinstance(self.docstore, AddableMixin):
|
||||
raise ValueError(
|
||||
"If trying to add texts, the underlying docstore should support "
|
||||
f"adding items, which {self.docstore} does not"
|
||||
)
|
||||
# Embed and create the documents.
|
||||
texts, embeddings = zip(*text_embeddings)
|
||||
|
||||
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids, **kwargs)
|
||||
|
||||
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
|
||||
"""Delete by vector ID or other criteria.
|
||||
|
||||
Args:
|
||||
ids: List of ids to delete.
|
||||
**kwargs: Other keyword arguments that subclasses might use.
|
||||
|
||||
Returns:
|
||||
Optional[bool]: True if deletion is successful,
|
||||
False otherwise, None if not implemented.
|
||||
"""
|
||||
|
||||
raise NotImplementedError("Deletions are not available in ScaNN, yet.")
|
||||
|
||||
def similarity_search_with_score_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
fetch_k: int = 20,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return docs most similar to query.
|
||||
|
||||
Args:
|
||||
embedding: Embedding vector to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, Any]]): Filter by metadata. Defaults to None.
|
||||
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
|
||||
Defaults to 20.
|
||||
**kwargs: kwargs to be passed to similarity search. Can include:
|
||||
score_threshold: Optional, a floating point value between 0 to 1 to
|
||||
filter the resulting set of retrieved docs
|
||||
|
||||
Returns:
|
||||
List of documents most similar to the query text and L2 distance
|
||||
in float for each. Lower score represents more similarity.
|
||||
"""
|
||||
vector = np.array([embedding], dtype=np.float32)
|
||||
if self._normalize_L2:
|
||||
vector = normalize(vector)
|
||||
indices, scores = self.index.search_batched(
|
||||
vector, k if filter is None else fetch_k
|
||||
)
|
||||
docs = []
|
||||
for j, i in enumerate(indices[0]):
|
||||
if i == -1:
|
||||
# This happens when not enough docs are returned.
|
||||
continue
|
||||
_id = self.index_to_docstore_id[i]
|
||||
doc = self.docstore.search(_id)
|
||||
if not isinstance(doc, Document):
|
||||
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||
if filter is not None:
|
||||
filter = {
|
||||
key: [value] if not isinstance(value, list) else value
|
||||
for key, value in filter.items()
|
||||
}
|
||||
if all(doc.metadata.get(key) in value for key, value in filter.items()):
|
||||
docs.append((doc, scores[0][j]))
|
||||
else:
|
||||
docs.append((doc, scores[0][j]))
|
||||
|
||||
score_threshold = kwargs.get("score_threshold")
|
||||
if score_threshold is not None:
|
||||
cmp = (
|
||||
operator.ge
|
||||
if self.distance_strategy
|
||||
in (DistanceStrategy.MAX_INNER_PRODUCT, DistanceStrategy.JACCARD)
|
||||
else operator.le
|
||||
)
|
||||
docs = [
|
||||
(doc, similarity)
|
||||
for doc, similarity in docs
|
||||
if cmp(similarity, score_threshold)
|
||||
]
|
||||
return docs[:k]
|
||||
|
||||
def similarity_search_with_score(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
fetch_k: int = 20,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return docs most similar to query.
|
||||
|
||||
Args:
|
||||
query: Text to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
|
||||
Defaults to 20.
|
||||
|
||||
Returns:
|
||||
List of documents most similar to the query text with
|
||||
L2 distance in float. Lower score represents more similarity.
|
||||
"""
|
||||
embedding = self.embedding.embed_query(query)
|
||||
docs = self.similarity_search_with_score_by_vector(
|
||||
embedding,
|
||||
k,
|
||||
filter=filter,
|
||||
fetch_k=fetch_k,
|
||||
**kwargs,
|
||||
)
|
||||
return docs
|
||||
|
||||
def similarity_search_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
fetch_k: int = 20,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs most similar to embedding vector.
|
||||
|
||||
Args:
|
||||
embedding: Embedding to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
|
||||
Defaults to 20.
|
||||
|
||||
Returns:
|
||||
List of Documents most similar to the embedding.
|
||||
"""
|
||||
docs_and_scores = self.similarity_search_with_score_by_vector(
|
||||
embedding,
|
||||
k,
|
||||
filter=filter,
|
||||
fetch_k=fetch_k,
|
||||
**kwargs,
|
||||
)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
|
||||
def similarity_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
fetch_k: int = 20,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs most similar to query.
|
||||
|
||||
Args:
|
||||
query: Text to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
filter: (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
|
||||
Defaults to 20.
|
||||
|
||||
Returns:
|
||||
List of Documents most similar to the query.
|
||||
"""
|
||||
docs_and_scores = self.similarity_search_with_score(
|
||||
query, k, filter=filter, fetch_k=fetch_k, **kwargs
|
||||
)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
|
||||
@classmethod
|
||||
def __from(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embeddings: List[List[float]],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
normalize_L2: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> ScaNN:
|
||||
scann = dependable_scann_import()
|
||||
distance_strategy = kwargs.get(
|
||||
"distance_strategy", DistanceStrategy.EUCLIDEAN_DISTANCE
|
||||
)
|
||||
scann_config = kwargs.get("scann_config", None)
|
||||
|
||||
vector = np.array(embeddings, dtype=np.float32)
|
||||
if normalize_L2:
|
||||
vector = normalize(vector)
|
||||
if scann_config is not None:
|
||||
index = scann.scann_ops_pybind.create_searcher(vector, scann_config)
|
||||
else:
|
||||
if distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
||||
index = (
|
||||
scann.scann_ops_pybind.builder(vector, 1, "dot_product")
|
||||
.score_brute_force()
|
||||
.build()
|
||||
)
|
||||
else:
|
||||
# Default to L2, currently other metric types not initialized.
|
||||
index = (
|
||||
scann.scann_ops_pybind.builder(vector, 1, "squared_l2")
|
||||
.score_brute_force()
|
||||
.build()
|
||||
)
|
||||
documents = []
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid4()) for _ in texts]
|
||||
for i, text in enumerate(texts):
|
||||
metadata = metadatas[i] if metadatas else {}
|
||||
documents.append(Document(page_content=text, metadata=metadata))
|
||||
index_to_id = dict(enumerate(ids))
|
||||
|
||||
if len(index_to_id) != len(documents):
|
||||
raise Exception(
|
||||
f"{len(index_to_id)} ids provided for {len(documents)} documents."
|
||||
" Each document should have an id."
|
||||
)
|
||||
|
||||
docstore = InMemoryDocstore(dict(zip(index_to_id.values(), documents)))
|
||||
return cls(
|
||||
embedding,
|
||||
index,
|
||||
docstore,
|
||||
index_to_id,
|
||||
normalize_L2=normalize_L2,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> ScaNN:
|
||||
"""Construct ScaNN wrapper from raw documents.
|
||||
|
||||
This is a user friendly interface that:
|
||||
1. Embeds documents.
|
||||
2. Creates an in memory docstore
|
||||
3. Initializes the ScaNN database
|
||||
|
||||
This is intended to be a quick way to get started.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.vectorstores import ScaNN
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
embeddings = OpenAIEmbeddings()
|
||||
scann = ScaNN.from_texts(texts, embeddings)
|
||||
"""
|
||||
embeddings = embedding.embed_documents(texts)
|
||||
return cls.__from(
|
||||
texts,
|
||||
embeddings,
|
||||
embedding,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_embeddings(
|
||||
cls,
|
||||
text_embeddings: List[Tuple[str, List[float]]],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> ScaNN:
|
||||
"""Construct ScaNN wrapper from raw documents.
|
||||
|
||||
This is a user friendly interface that:
|
||||
1. Embeds documents.
|
||||
2. Creates an in memory docstore
|
||||
3. Initializes the ScaNN database
|
||||
|
||||
This is intended to be a quick way to get started.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.vectorstores import ScaNN
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
embeddings = OpenAIEmbeddings()
|
||||
text_embeddings = embeddings.embed_documents(texts)
|
||||
text_embedding_pairs = list(zip(texts, text_embeddings))
|
||||
scann = ScaNN.from_embeddings(text_embedding_pairs, embeddings)
|
||||
"""
|
||||
texts = [t[0] for t in text_embeddings]
|
||||
embeddings = [t[1] for t in text_embeddings]
|
||||
return cls.__from(
|
||||
texts,
|
||||
embeddings,
|
||||
embedding,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def save_local(self, folder_path: str, index_name: str = "index") -> None:
|
||||
"""Save ScaNN index, docstore, and index_to_docstore_id to disk.
|
||||
|
||||
Args:
|
||||
folder_path: folder path to save index, docstore,
|
||||
and index_to_docstore_id to.
|
||||
"""
|
||||
path = Path(folder_path)
|
||||
scann_path = path / "{index_name}.scann".format(index_name=index_name)
|
||||
scann_path.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
# save index separately since it is not picklable
|
||||
self.index.serialize(str(scann_path))
|
||||
|
||||
# save docstore and index_to_docstore_id
|
||||
with open(path / "{index_name}.pkl".format(index_name=index_name), "wb") as f:
|
||||
pickle.dump((self.docstore, self.index_to_docstore_id), f)
|
||||
|
||||
@classmethod
|
||||
def load_local(
|
||||
cls,
|
||||
folder_path: str,
|
||||
embedding: Embeddings,
|
||||
index_name: str = "index",
|
||||
**kwargs: Any,
|
||||
) -> ScaNN:
|
||||
"""Load ScaNN index, docstore, and index_to_docstore_id from disk.
|
||||
|
||||
Args:
|
||||
folder_path: folder path to load index, docstore,
|
||||
and index_to_docstore_id from.
|
||||
embeddings: Embeddings to use when generating queries
|
||||
index_name: for saving with a specific index file name
|
||||
"""
|
||||
path = Path(folder_path)
|
||||
scann_path = path / "{index_name}.scann".format(index_name=index_name)
|
||||
scann_path.mkdir(exist_ok=True, parents=True)
|
||||
# load index separately since it is not picklable
|
||||
scann = dependable_scann_import()
|
||||
index = scann.scann_ops_pybind.load_searcher(str(scann_path))
|
||||
|
||||
# load docstore and index_to_docstore_id
|
||||
with open(path / "{index_name}.pkl".format(index_name=index_name), "rb") as f:
|
||||
docstore, index_to_docstore_id = pickle.load(f)
|
||||
return cls(embedding, index, docstore, index_to_docstore_id, **kwargs)
|
||||
|
||||
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
||||
"""
|
||||
The 'correct' relevance function
|
||||
may differ depending on a few things, including:
|
||||
- the distance / similarity metric used by the VectorStore
|
||||
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
||||
- embedding dimensionality
|
||||
- etc.
|
||||
"""
|
||||
if self.override_relevance_score_fn is not None:
|
||||
return self.override_relevance_score_fn
|
||||
|
||||
# Default strategy is to rely on distance strategy provided in
|
||||
# vectorstore constructor
|
||||
if self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
||||
return self._max_inner_product_relevance_score_fn
|
||||
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
|
||||
# Default behavior is to use euclidean distance relevancy
|
||||
return self._euclidean_relevance_score_fn
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unknown distance strategy, must be cosine, max_inner_product,"
|
||||
" or euclidean"
|
||||
)
|
||||
|
||||
def _similarity_search_with_relevance_scores(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
fetch_k: int = 20,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return docs and their similarity scores on a scale from 0 to 1."""
|
||||
# Pop score threshold so that only relevancy scores, not raw scores, are
|
||||
# filtered.
|
||||
score_threshold = kwargs.pop("score_threshold", None)
|
||||
relevance_score_fn = self._select_relevance_score_fn()
|
||||
if relevance_score_fn is None:
|
||||
raise ValueError(
|
||||
"normalize_score_fn must be provided to"
|
||||
" ScaNN constructor to normalize scores"
|
||||
)
|
||||
docs_and_scores = self.similarity_search_with_score(
|
||||
query,
|
||||
k=k,
|
||||
filter=filter,
|
||||
fetch_k=fetch_k,
|
||||
**kwargs,
|
||||
)
|
||||
docs_and_rel_scores = [
|
||||
(doc, relevance_score_fn(score)) for doc, score in docs_and_scores
|
||||
]
|
||||
if score_threshold is not None:
|
||||
docs_and_rel_scores = [
|
||||
(doc, similarity)
|
||||
for doc, similarity in docs_and_rel_scores
|
||||
if similarity >= score_threshold
|
||||
]
|
||||
return docs_and_rel_scores
|
Reference in New Issue
Block a user