mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 11:02:37 +00:00
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
This commit is contained in:
151
libs/community/tests/integration_tests/llms/test_vertexai.py
Normal file
151
libs/community/tests/integration_tests/llms/test_vertexai.py
Normal file
@@ -0,0 +1,151 @@
|
||||
"""Test Vertex AI API wrapper.
|
||||
In order to run this test, you need to install VertexAI SDK:
|
||||
pip install google-cloud-aiplatform>=1.36.0
|
||||
|
||||
Your end-user credentials would be used to make the calls (make sure you've run
|
||||
`gcloud auth login` first).
|
||||
"""
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
from langchain_core.outputs import LLMResult
|
||||
|
||||
from langchain_community.llms import VertexAI, VertexAIModelGarden
|
||||
|
||||
|
||||
def test_vertex_initialization() -> None:
|
||||
llm = VertexAI()
|
||||
assert llm._llm_type == "vertexai"
|
||||
assert llm.model_name == llm.client._model_id
|
||||
|
||||
|
||||
def test_vertex_call() -> None:
|
||||
llm = VertexAI(temperature=0)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_vertex_generate() -> None:
|
||||
llm = VertexAI(temperature=0.3, n=2, model_name="text-bison@001")
|
||||
output = llm.generate(["Say foo:"])
|
||||
assert isinstance(output, LLMResult)
|
||||
assert len(output.generations) == 1
|
||||
assert len(output.generations[0]) == 2
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_vertex_generate_code() -> None:
|
||||
llm = VertexAI(temperature=0.3, n=2, model_name="code-bison@001")
|
||||
output = llm.generate(["generate a python method that says foo:"])
|
||||
assert isinstance(output, LLMResult)
|
||||
assert len(output.generations) == 1
|
||||
assert len(output.generations[0]) == 2
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
async def test_vertex_agenerate() -> None:
|
||||
llm = VertexAI(temperature=0)
|
||||
output = await llm.agenerate(["Please say foo:"])
|
||||
assert isinstance(output, LLMResult)
|
||||
|
||||
|
||||
@pytest.mark.scheduled
|
||||
def test_vertex_stream() -> None:
|
||||
llm = VertexAI(temperature=0)
|
||||
outputs = list(llm.stream("Please say foo:"))
|
||||
assert isinstance(outputs[0], str)
|
||||
|
||||
|
||||
async def test_vertex_consistency() -> None:
|
||||
llm = VertexAI(temperature=0)
|
||||
output = llm.generate(["Please say foo:"])
|
||||
streaming_output = llm.generate(["Please say foo:"], stream=True)
|
||||
async_output = await llm.agenerate(["Please say foo:"])
|
||||
assert output.generations[0][0].text == streaming_output.generations[0][0].text
|
||||
assert output.generations[0][0].text == async_output.generations[0][0].text
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"endpoint_os_variable_name,result_arg",
|
||||
[("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)],
|
||||
)
|
||||
def test_model_garden(
|
||||
endpoint_os_variable_name: str, result_arg: Optional[str]
|
||||
) -> None:
|
||||
"""In order to run this test, you should provide endpoint names.
|
||||
|
||||
Example:
|
||||
export FALCON_ENDPOINT_ID=...
|
||||
export LLAMA_ENDPOINT_ID=...
|
||||
export PROJECT=...
|
||||
"""
|
||||
endpoint_id = os.environ[endpoint_os_variable_name]
|
||||
project = os.environ["PROJECT"]
|
||||
location = "europe-west4"
|
||||
llm = VertexAIModelGarden(
|
||||
endpoint_id=endpoint_id,
|
||||
project=project,
|
||||
result_arg=result_arg,
|
||||
location=location,
|
||||
)
|
||||
output = llm("What is the meaning of life?")
|
||||
assert isinstance(output, str)
|
||||
assert llm._llm_type == "vertexai_model_garden"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"endpoint_os_variable_name,result_arg",
|
||||
[("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)],
|
||||
)
|
||||
def test_model_garden_generate(
|
||||
endpoint_os_variable_name: str, result_arg: Optional[str]
|
||||
) -> None:
|
||||
"""In order to run this test, you should provide endpoint names.
|
||||
|
||||
Example:
|
||||
export FALCON_ENDPOINT_ID=...
|
||||
export LLAMA_ENDPOINT_ID=...
|
||||
export PROJECT=...
|
||||
"""
|
||||
endpoint_id = os.environ[endpoint_os_variable_name]
|
||||
project = os.environ["PROJECT"]
|
||||
location = "europe-west4"
|
||||
llm = VertexAIModelGarden(
|
||||
endpoint_id=endpoint_id,
|
||||
project=project,
|
||||
result_arg=result_arg,
|
||||
location=location,
|
||||
)
|
||||
output = llm.generate(["What is the meaning of life?", "How much is 2+2"])
|
||||
assert isinstance(output, LLMResult)
|
||||
assert len(output.generations) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"endpoint_os_variable_name,result_arg",
|
||||
[("FALCON_ENDPOINT_ID", "generated_text"), ("LLAMA_ENDPOINT_ID", None)],
|
||||
)
|
||||
async def test_model_garden_agenerate(
|
||||
endpoint_os_variable_name: str, result_arg: Optional[str]
|
||||
) -> None:
|
||||
endpoint_id = os.environ[endpoint_os_variable_name]
|
||||
project = os.environ["PROJECT"]
|
||||
location = "europe-west4"
|
||||
llm = VertexAIModelGarden(
|
||||
endpoint_id=endpoint_id,
|
||||
project=project,
|
||||
result_arg=result_arg,
|
||||
location=location,
|
||||
)
|
||||
output = await llm.agenerate(["What is the meaning of life?", "How much is 2+2"])
|
||||
assert isinstance(output, LLMResult)
|
||||
assert len(output.generations) == 2
|
||||
|
||||
|
||||
def test_vertex_call_count_tokens() -> None:
|
||||
llm = VertexAI()
|
||||
output = llm.get_num_tokens("How are you?")
|
||||
assert output == 4
|
Reference in New Issue
Block a user