mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-25 04:49:17 +00:00
docs, templates: update schema imports to core (#17885)
- chat models, messages - documents - agentaction/finish - baseretriever,document - stroutputparser - more messages - basemessage - format_document - baseoutputparser --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -2934,7 +2934,7 @@ class RunnableGenerator(Runnable[Input, Output]):
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnableGenerator, RunnableLambda
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain.schema import StrOutputParser
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
|
||||
|
||||
model = ChatOpenAI()
|
||||
|
@@ -3,7 +3,7 @@ import re
|
||||
from abc import abstractmethod
|
||||
from typing import Dict, NamedTuple
|
||||
|
||||
from langchain.schema import BaseOutputParser
|
||||
from langchain_core.output_parsers import BaseOutputParser
|
||||
|
||||
|
||||
class AutoGPTAction(NamedTuple):
|
||||
|
@@ -2,7 +2,7 @@ import uuid
|
||||
from typing import Any, Callable, Optional, cast
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.schema import AIMessage, HumanMessage
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
from langchain_core.prompt_values import ChatPromptValue, StringPromptValue
|
||||
|
||||
from langchain_experimental.comprehend_moderation.pii import ComprehendPII
|
||||
|
@@ -1,9 +1,9 @@
|
||||
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
import requests
|
||||
from langchain.schema import Document
|
||||
from langchain.utils import get_from_env
|
||||
from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship
|
||||
from langchain_core.documents import Document
|
||||
|
||||
|
||||
def format_property_key(s: str) -> str:
|
||||
|
@@ -5,7 +5,8 @@ import re
|
||||
from typing import List
|
||||
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
from langchain.schema import BaseOutputParser, OutputParserException
|
||||
from langchain_core.output_parsers import BaseOutputParser
|
||||
from langchain_core.exceptions import OutputParserException
|
||||
|
||||
_PROMPT_TEMPLATE = """If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
from abc import abstractmethod
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.schema import BaseOutputParser
|
||||
from langchain_core.output_parsers import BaseOutputParser
|
||||
|
||||
from langchain_experimental.pydantic_v1 import BaseModel, Field
|
||||
|
||||
|
@@ -1,11 +1,13 @@
|
||||
"""Vector SQL Database Chain Retriever"""
|
||||
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForRetrieverRun,
|
||||
CallbackManagerForRetrieverRun,
|
||||
)
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
|
||||
|
||||
|
@@ -1,4 +1,5 @@
|
||||
"""Vector SQL Database Chain Retriever"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict, List, Optional, Sequence, Union
|
||||
@@ -7,11 +8,12 @@ from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chains.sql_database.prompt import PROMPT, SQL_PROMPTS
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
from langchain.schema import BaseOutputParser, BasePromptTemplate
|
||||
from langchain_community.tools.sql_database.prompt import QUERY_CHECKER
|
||||
from langchain_community.utilities.sql_database import SQLDatabase
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.output_parsers import BaseOutputParser
|
||||
from langchain_core.prompts import BasePromptTemplate
|
||||
|
||||
from langchain_experimental.sql.base import INTERMEDIATE_STEPS_KEY, SQLDatabaseChain
|
||||
|
||||
|
@@ -3,7 +3,7 @@ from textwrap import dedent
|
||||
from typing import List
|
||||
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.schema import BaseOutputParser
|
||||
from langchain_core.output_parsers import BaseOutputParser
|
||||
|
||||
from langchain_experimental.tot.thought import ThoughtValidity
|
||||
|
||||
|
@@ -5,8 +5,8 @@ from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.schema import AIMessage, HumanMessage, SystemMessage
|
||||
from langchain_core.language_models import LLM
|
||||
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
||||
|
||||
from langchain_experimental.chat_models import Llama2Chat
|
||||
from langchain_experimental.chat_models.llm_wrapper import DEFAULT_SYSTEM_PROMPT
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import pytest
|
||||
from langchain.schema import AIMessage, HumanMessage, SystemMessage
|
||||
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
||||
|
||||
from langchain_experimental.chat_models import Orca
|
||||
from tests.unit_tests.chat_models.test_llm_wrapper_llama2chat import FakeLLM
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import pytest
|
||||
from langchain.schema import AIMessage, HumanMessage, SystemMessage
|
||||
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
||||
|
||||
from langchain_experimental.chat_models import Vicuna
|
||||
from tests.unit_tests.chat_models.test_llm_wrapper_llama2chat import FakeLLM
|
||||
|
Reference in New Issue
Block a user