mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-16 23:13:31 +00:00
docs, templates: update schema imports to core (#17885)
- chat models, messages - documents - agentaction/finish - baseretriever,document - stroutputparser - more messages - basemessage - format_document - baseoutputparser --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -3,8 +3,8 @@ import os
|
||||
import cassio
|
||||
import langchain
|
||||
from langchain.cache import CassandraCache
|
||||
from langchain.schema import BaseMessage
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
from langchain import hub
|
||||
from langchain.schema import StrOutputParser
|
||||
from langchain_community.chat_models import ChatAnthropic
|
||||
from langchain_community.utilities import WikipediaAPIWrapper
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
||||
|
||||
|
@@ -69,7 +69,7 @@ from functools import partial
|
||||
from typing import Dict, Optional, Callable, List
|
||||
from langserve import RemoteRunnable
|
||||
from langchain.callbacks.manager import tracing_v2_enabled
|
||||
from langchain.schema import BaseMessage, AIMessage, HumanMessage
|
||||
from langchain_core.messages import BaseMessage, AIMessage, HumanMessage
|
||||
|
||||
# Update with the URL provided by your LangServe server
|
||||
chain = RemoteRunnable("http://127.0.0.1:8031/chat-bot-feedback")
|
||||
|
@@ -3,10 +3,10 @@ from typing import List, Optional
|
||||
from langchain.chains.openai_functions import (
|
||||
create_structured_output_chain,
|
||||
)
|
||||
from langchain.schema import Document
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.graphs import Neo4jGraph
|
||||
from langchain_community.graphs.graph_document import GraphDocument
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
|
||||
from neo4j_generation.utils import (
|
||||
|
@@ -5,9 +5,9 @@ from langchain.agents.format_scratchpad import format_to_openai_function_message
|
||||
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain.schema import AIMessage, HumanMessage
|
||||
from langchain.tools.render import format_tool_to_openai_function
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
|
||||
from neo4j_semantic_layer.information_tool import InformationTool
|
||||
from neo4j_semantic_layer.memory_tool import MemoryTool
|
||||
@@ -45,9 +45,9 @@ def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
agent = (
|
||||
{
|
||||
"input": lambda x: x["input"],
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"])
|
||||
if x.get("chat_history")
|
||||
else [],
|
||||
"chat_history": lambda x: (
|
||||
_format_chat_history(x["chat_history"]) if x.get("chat_history") else []
|
||||
),
|
||||
"agent_scratchpad": lambda x: format_to_openai_function_messages(
|
||||
x["intermediate_steps"]
|
||||
),
|
||||
|
@@ -8,9 +8,9 @@ from langchain.agents.output_parsers import (
|
||||
)
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain.schema import AIMessage, HumanMessage
|
||||
from langchain.tools.render import render_text_description_and_args
|
||||
from langchain_community.chat_models import ChatOllama
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
|
||||
from neo4j_semantic_ollama.information_tool import InformationTool
|
||||
from neo4j_semantic_ollama.memory_tool import MemoryTool
|
||||
@@ -87,9 +87,9 @@ agent = (
|
||||
{
|
||||
"input": lambda x: x["input"],
|
||||
"agent_scratchpad": lambda x: format_log_to_messages(x["intermediate_steps"]),
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"])
|
||||
if x.get("chat_history")
|
||||
else [],
|
||||
"chat_history": lambda x: (
|
||||
_format_chat_history(x["chat_history"]) if x.get("chat_history") else []
|
||||
),
|
||||
}
|
||||
| prompt
|
||||
| chat_model_with_stop
|
||||
|
@@ -1,8 +1,8 @@
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from langchain.memory import ChatMessageHistory
|
||||
from langchain.schema import AIMessage, HumanMessage
|
||||
from langchain_community.graphs import Neo4jGraph
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
|
||||
graph = Neo4jGraph()
|
||||
|
||||
|
@@ -6,13 +6,13 @@ from langchain.agents import (
|
||||
)
|
||||
from langchain.agents.format_scratchpad import format_to_openai_functions
|
||||
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
||||
from langchain.schema import Document
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_community.tools.convert_to_openai import format_tool_to_openai_function
|
||||
from langchain_community.tools.tavily_search import TavilySearchResults
|
||||
from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper
|
||||
from langchain_community.vectorstores import FAISS
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
from langchain_core.prompts import (
|
||||
ChatPromptTemplate,
|
||||
|
@@ -2,13 +2,16 @@ import os
|
||||
from operator import itemgetter
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.schema import AIMessage, HumanMessage, format_document
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.vectorstores.zep import CollectionConfig, ZepVectorStore
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.prompts import (
|
||||
ChatPromptTemplate,
|
||||
MessagesPlaceholder,
|
||||
format_document,
|
||||
)
|
||||
from langchain_core.prompts.prompt import PromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.runnables import (
|
||||
|
@@ -2,11 +2,15 @@ import os
|
||||
from operator import itemgetter
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.schema import AIMessage, HumanMessage, format_document
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.prompts import (
|
||||
ChatPromptTemplate,
|
||||
MessagesPlaceholder,
|
||||
format_document,
|
||||
)
|
||||
from langchain_core.prompts.prompt import PromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.runnables import (
|
||||
|
@@ -1,11 +1,12 @@
|
||||
from operator import itemgetter
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from langchain.schema import BaseMessage, format_document
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||
from langchain_community.vectorstores.elasticsearch import ElasticsearchStore
|
||||
from langchain_core.messages import BaseMessage
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import format_document
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||||
|
||||
|
@@ -1,11 +1,11 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_community.vectorstores import Chroma
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
@@ -7,10 +7,10 @@ from langchain.retrievers import (
|
||||
PubMedRetriever,
|
||||
WikipediaRetriever,
|
||||
)
|
||||
from langchain.schema import StrOutputParser
|
||||
from langchain.utils.math import cosine_similarity
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import (
|
||||
|
@@ -8,9 +8,9 @@ from langchain.retrievers import (
|
||||
PubMedRetriever,
|
||||
WikipediaRetriever,
|
||||
)
|
||||
from langchain.schema import StrOutputParser
|
||||
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.runnables import (
|
||||
|
@@ -3,11 +3,11 @@ from operator import itemgetter
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.retrievers import SelfQueryRetriever
|
||||
from langchain.schema import format_document
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_community.vectorstores.elasticsearch import ElasticsearchStore
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import format_document
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||||
|
||||
|
@@ -4,12 +4,16 @@ from operator import itemgetter
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from dotenv import find_dotenv, load_dotenv
|
||||
from langchain.schema import AIMessage, HumanMessage, format_document
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_community.vectorstores.timescalevector import TimescaleVector
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.prompts import (
|
||||
ChatPromptTemplate,
|
||||
MessagesPlaceholder,
|
||||
format_document,
|
||||
)
|
||||
from langchain_core.prompts.prompt import PromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.runnables import (
|
||||
@@ -147,12 +151,16 @@ _inputs = RunnableParallel(
|
||||
)
|
||||
|
||||
_datetime_to_string = RunnablePassthrough.assign(
|
||||
start_date=lambda x: x.get("start_date", None).isoformat()
|
||||
if x.get("start_date", None) is not None
|
||||
else None,
|
||||
end_date=lambda x: x.get("end_date", None).isoformat()
|
||||
if x.get("end_date", None) is not None
|
||||
else None,
|
||||
start_date=lambda x: (
|
||||
x.get("start_date", None).isoformat()
|
||||
if x.get("start_date", None) is not None
|
||||
else None
|
||||
),
|
||||
end_date=lambda x: (
|
||||
x.get("end_date", None).isoformat()
|
||||
if x.get("end_date", None) is not None
|
||||
else None
|
||||
),
|
||||
).with_types(input_type=ChatHistory)
|
||||
|
||||
chain = (
|
||||
|
@@ -5,12 +5,13 @@ from langchain.agents import AgentExecutor
|
||||
from langchain.agents.format_scratchpad import format_log_to_str
|
||||
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
|
||||
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
from langchain.tools.render import render_text_description
|
||||
from langchain.tools.retriever import create_retriever_tool
|
||||
from langchain_community.chat_models.fireworks import ChatFireworks
|
||||
from langchain_community.utilities.arxiv import ArxivAPIWrapper
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
MODEL_ID = "accounts/fireworks/models/mixtral-8x7b-instruct"
|
||||
|
||||
|
@@ -5,13 +5,14 @@ from langchain.agents import AgentExecutor
|
||||
from langchain.agents.format_scratchpad import format_to_openai_function_messages
|
||||
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
||||
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
from langchain.tools.retriever import create_retriever_tool
|
||||
from langchain_community.tools.convert_to_openai import format_tool_to_openai_function
|
||||
from langchain_community.utilities.arxiv import ArxivAPIWrapper
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from langchain_openai import AzureChatOpenAI
|
||||
|
||||
|
||||
|
@@ -63,7 +63,7 @@ You can find the documents in the `packages/self-query-qdrant/self_query_qdrant/
|
||||
Here is one of the documents:
|
||||
|
||||
```python
|
||||
from langchain.schema import Document
|
||||
from langchain_core.documents import Document
|
||||
|
||||
Document(
|
||||
page_content="Spaghetti with meatballs and tomato sauce",
|
||||
@@ -108,7 +108,7 @@ chain = create_chain(
|
||||
The same goes for the `initialize` function that creates a Qdrant collection and indexes the documents:
|
||||
|
||||
```python
|
||||
from langchain.schema import Document
|
||||
from langchain_core.documents import Document
|
||||
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
from self_query_qdrant.chain import initialize
|
||||
|
@@ -3,11 +3,11 @@ from typing import List, Optional
|
||||
|
||||
from langchain.chains.query_constructor.schema import AttributeInfo
|
||||
from langchain.retrievers import SelfQueryRetriever
|
||||
from langchain.schema import Document, StrOutputParser
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_community.llms import BaseLLM
|
||||
from langchain_community.llms.openai import OpenAI
|
||||
from langchain_community.vectorstores.qdrant import Qdrant
|
||||
from langchain_core.documents import Document, StrOutputParser
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||||
|
@@ -1,5 +1,5 @@
|
||||
from langchain.chains.query_constructor.schema import AttributeInfo
|
||||
from langchain.schema import Document
|
||||
from langchain_core.documents import Document
|
||||
|
||||
# Qdrant collection name
|
||||
DEFAULT_COLLECTION_NAME = "restaurants"
|
||||
|
@@ -1,7 +1,7 @@
|
||||
from string import Formatter
|
||||
from typing import List
|
||||
|
||||
from langchain.schema import Document
|
||||
from langchain_core.documents import Document
|
||||
|
||||
document_template = """
|
||||
PASSAGE: {page_content}
|
||||
|
@@ -1,4 +1,4 @@
|
||||
from langchain.schema import AgentAction, AgentFinish
|
||||
from langchain_core.agents import AgentAction, AgentFinish
|
||||
|
||||
|
||||
def parse_output(message: str):
|
||||
|
@@ -2,10 +2,10 @@ from typing import List, Tuple
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.format_scratchpad import format_xml
|
||||
from langchain.schema import AIMessage, HumanMessage
|
||||
from langchain.tools import DuckDuckGoSearchRun
|
||||
from langchain.tools.render import render_text_description
|
||||
from langchain_community.chat_models import ChatAnthropic
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
|
||||
from xml_agent.prompts import conversational_prompt, parse_output
|
||||
|
@@ -1,4 +1,4 @@
|
||||
from langchain.schema import AgentAction, AgentFinish
|
||||
from langchain_core.agents import AgentAction, AgentFinish
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
|
||||
template = """You are a helpful assistant. Help the user answer any questions.
|
||||
|
Reference in New Issue
Block a user