qdrant: init package (#21146)

## Description

This PR introduces the new `langchain-qdrant` partner package, intending
to deprecate the community package.

## Changes

- Moved the Qdrant vector store implementation `/libs/partners/qdrant`
with integration tests.
- The conditional imports of the client library are now regular with
minor implementation improvements.
- Added a deprecation warning to
`langchain_community.vectorstores.qdrant.Qdrant`.
- Replaced references/imports from `langchain_community` with either
`langchain_core` or by moving the definitions to the `langchain_qdrant`
package itself.
- Updated the Qdrant vector store documentation to reflect the changes.

## Testing
- `QDRANT_URL` and
[`QDRANT_API_KEY`](583e36bf6b)
env values need to be set to [run integration
tests](d608c93d1f)
in the [cloud](https://cloud.qdrant.tech).
- If a Qdrant instance is running at `http://localhost:6333`, the
integration tests will use it too.
- By default, tests use an
[`in-memory`](https://github.com/qdrant/qdrant-client?tab=readme-ov-file#local-mode)
instance(Not comprehensive).

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Erick Friis <erickfriis@gmail.com>
This commit is contained in:
Anush
2024-05-14 06:50:03 +05:30
committed by GitHub
parent fe8c9d621a
commit edd68e4ad4
35 changed files with 5650 additions and 47 deletions

View File

@@ -0,0 +1,288 @@
import tempfile
import uuid
from typing import Optional
import pytest
from langchain_core.documents import Document
from langchain_qdrant import Qdrant
from langchain_qdrant.vectorstores import QdrantException
from tests.integration_tests.common import (
ConsistentFakeEmbeddings,
assert_documents_equals,
)
from tests.integration_tests.fixtures import qdrant_locations
def test_qdrant_from_texts_stores_duplicated_texts() -> None:
"""Test end to end Qdrant.from_texts stores duplicated texts separately."""
from qdrant_client import QdrantClient
collection_name = uuid.uuid4().hex
with tempfile.TemporaryDirectory() as tmpdir:
vec_store = Qdrant.from_texts(
["abc", "abc"],
ConsistentFakeEmbeddings(),
collection_name=collection_name,
path=str(tmpdir),
)
del vec_store
client = QdrantClient(path=str(tmpdir))
assert 2 == client.count(collection_name).count
@pytest.mark.parametrize("batch_size", [1, 64])
@pytest.mark.parametrize("vector_name", [None, "my-vector"])
def test_qdrant_from_texts_stores_ids(
batch_size: int, vector_name: Optional[str]
) -> None:
"""Test end to end Qdrant.from_texts stores provided ids."""
from qdrant_client import QdrantClient
collection_name = uuid.uuid4().hex
with tempfile.TemporaryDirectory() as tmpdir:
ids = [
"fa38d572-4c31-4579-aedc-1960d79df6df",
"cdc1aa36-d6ab-4fb2-8a94-56674fd27484",
]
vec_store = Qdrant.from_texts(
["abc", "def"],
ConsistentFakeEmbeddings(),
ids=ids,
collection_name=collection_name,
path=str(tmpdir),
batch_size=batch_size,
vector_name=vector_name,
)
del vec_store
client = QdrantClient(path=str(tmpdir))
assert 2 == client.count(collection_name).count
stored_ids = [point.id for point in client.scroll(collection_name)[0]]
assert set(ids) == set(stored_ids)
@pytest.mark.parametrize("vector_name", ["custom-vector"])
def test_qdrant_from_texts_stores_embeddings_as_named_vectors(vector_name: str) -> None:
"""Test end to end Qdrant.from_texts stores named vectors if name is provided."""
from qdrant_client import QdrantClient
collection_name = uuid.uuid4().hex
with tempfile.TemporaryDirectory() as tmpdir:
vec_store = Qdrant.from_texts(
["lorem", "ipsum", "dolor", "sit", "amet"],
ConsistentFakeEmbeddings(),
collection_name=collection_name,
path=str(tmpdir),
vector_name=vector_name,
)
del vec_store
client = QdrantClient(path=str(tmpdir))
assert 5 == client.count(collection_name).count
assert all(
vector_name in point.vector # type: ignore[operator]
for point in client.scroll(collection_name, with_vectors=True)[0]
)
@pytest.mark.parametrize("vector_name", [None, "custom-vector"])
def test_qdrant_from_texts_reuses_same_collection(vector_name: Optional[str]) -> None:
"""Test if Qdrant.from_texts reuses the same collection"""
from qdrant_client import QdrantClient
collection_name = uuid.uuid4().hex
embeddings = ConsistentFakeEmbeddings()
with tempfile.TemporaryDirectory() as tmpdir:
vec_store = Qdrant.from_texts(
["lorem", "ipsum", "dolor", "sit", "amet"],
embeddings,
collection_name=collection_name,
path=str(tmpdir),
vector_name=vector_name,
)
del vec_store
vec_store = Qdrant.from_texts(
["foo", "bar"],
embeddings,
collection_name=collection_name,
path=str(tmpdir),
vector_name=vector_name,
)
del vec_store
client = QdrantClient(path=str(tmpdir))
assert 7 == client.count(collection_name).count
@pytest.mark.parametrize("vector_name", [None, "custom-vector"])
def test_qdrant_from_texts_raises_error_on_different_dimensionality(
vector_name: Optional[str],
) -> None:
"""Test if Qdrant.from_texts raises an exception if dimensionality does not match"""
collection_name = uuid.uuid4().hex
with tempfile.TemporaryDirectory() as tmpdir:
vec_store = Qdrant.from_texts(
["lorem", "ipsum", "dolor", "sit", "amet"],
ConsistentFakeEmbeddings(dimensionality=10),
collection_name=collection_name,
path=str(tmpdir),
vector_name=vector_name,
)
del vec_store
with pytest.raises(QdrantException):
Qdrant.from_texts(
["foo", "bar"],
ConsistentFakeEmbeddings(dimensionality=5),
collection_name=collection_name,
path=str(tmpdir),
vector_name=vector_name,
)
@pytest.mark.parametrize(
["first_vector_name", "second_vector_name"],
[
(None, "custom-vector"),
("custom-vector", None),
("my-first-vector", "my-second_vector"),
],
)
def test_qdrant_from_texts_raises_error_on_different_vector_name(
first_vector_name: Optional[str],
second_vector_name: Optional[str],
) -> None:
"""Test if Qdrant.from_texts raises an exception if vector name does not match"""
collection_name = uuid.uuid4().hex
with tempfile.TemporaryDirectory() as tmpdir:
vec_store = Qdrant.from_texts(
["lorem", "ipsum", "dolor", "sit", "amet"],
ConsistentFakeEmbeddings(dimensionality=10),
collection_name=collection_name,
path=str(tmpdir),
vector_name=first_vector_name,
)
del vec_store
with pytest.raises(QdrantException):
Qdrant.from_texts(
["foo", "bar"],
ConsistentFakeEmbeddings(dimensionality=5),
collection_name=collection_name,
path=str(tmpdir),
vector_name=second_vector_name,
)
def test_qdrant_from_texts_raises_error_on_different_distance() -> None:
"""Test if Qdrant.from_texts raises an exception if distance does not match"""
collection_name = uuid.uuid4().hex
with tempfile.TemporaryDirectory() as tmpdir:
vec_store = Qdrant.from_texts(
["lorem", "ipsum", "dolor", "sit", "amet"],
ConsistentFakeEmbeddings(),
collection_name=collection_name,
path=str(tmpdir),
distance_func="Cosine",
)
del vec_store
with pytest.raises(QdrantException) as excinfo:
Qdrant.from_texts(
["foo", "bar"],
ConsistentFakeEmbeddings(),
collection_name=collection_name,
path=str(tmpdir),
distance_func="Euclid",
)
expected_message = (
"configured for COSINE similarity, but requested EUCLID. Please set "
"`distance_func` parameter to `COSINE`"
)
assert expected_message in str(excinfo.value)
@pytest.mark.parametrize("vector_name", [None, "custom-vector"])
def test_qdrant_from_texts_recreates_collection_on_force_recreate(
vector_name: Optional[str],
) -> None:
"""Test if Qdrant.from_texts recreates the collection even if config mismatches"""
from qdrant_client import QdrantClient
collection_name = uuid.uuid4().hex
with tempfile.TemporaryDirectory() as tmpdir:
vec_store = Qdrant.from_texts(
["lorem", "ipsum", "dolor", "sit", "amet"],
ConsistentFakeEmbeddings(dimensionality=10),
collection_name=collection_name,
path=str(tmpdir),
vector_name=vector_name,
)
del vec_store
vec_store = Qdrant.from_texts(
["foo", "bar"],
ConsistentFakeEmbeddings(dimensionality=5),
collection_name=collection_name,
path=str(tmpdir),
vector_name=vector_name,
force_recreate=True,
)
del vec_store
client = QdrantClient(path=str(tmpdir))
assert 2 == client.count(collection_name).count
@pytest.mark.parametrize("batch_size", [1, 64])
@pytest.mark.parametrize("content_payload_key", [Qdrant.CONTENT_KEY, "foo"])
@pytest.mark.parametrize("metadata_payload_key", [Qdrant.METADATA_KEY, "bar"])
def test_qdrant_from_texts_stores_metadatas(
batch_size: int, content_payload_key: str, metadata_payload_key: str
) -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
metadatas=metadatas,
location=":memory:",
content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key,
batch_size=batch_size,
)
output = docsearch.similarity_search("foo", k=1)
assert_documents_equals(
output, [Document(page_content="foo", metadata={"page": 0})]
)
@pytest.mark.parametrize("location", qdrant_locations(use_in_memory=False))
def test_from_texts_passed_optimizers_config_and_on_disk_payload(location: str) -> None:
from qdrant_client import models
collection_name = uuid.uuid4().hex
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
optimizers_config = models.OptimizersConfigDiff(memmap_threshold=1000)
vec_store = Qdrant.from_texts(
texts,
ConsistentFakeEmbeddings(),
metadatas=metadatas,
optimizers_config=optimizers_config,
on_disk_payload=True,
on_disk=True,
collection_name=collection_name,
location=location,
)
collection_info = vec_store.client.get_collection(collection_name)
assert collection_info.config.params.vectors.on_disk is True # type: ignore
assert collection_info.config.optimizer_config.memmap_threshold == 1000
assert collection_info.config.params.on_disk_payload is True