diff --git a/libs/core/langchain_core/runnables/base.py b/libs/core/langchain_core/runnables/base.py index 4b24b8b1aa7..80284d7b637 100644 --- a/libs/core/langchain_core/runnables/base.py +++ b/libs/core/langchain_core/runnables/base.py @@ -398,7 +398,9 @@ class Runnable(Generic[Input, Output], ABC): input_node = graph.add_node(self.get_input_schema(config)) except TypeError: input_node = graph.add_node(create_model(self.get_name("Input"))) - runnable_node = graph.add_node(self) + runnable_node = graph.add_node( + self, metadata=config.get("metadata") if config else None + ) try: output_node = graph.add_node(self.get_output_schema(config)) except TypeError: @@ -4629,7 +4631,7 @@ class RunnableBindingBase(RunnableSerializable[Input, Output]): return self.bound.config_specs def get_graph(self, config: Optional[RunnableConfig] = None) -> Graph: - return self.bound.get_graph(config) + return self.bound.get_graph(self._merge_configs(config)) @classmethod def is_lc_serializable(cls) -> bool: diff --git a/libs/core/langchain_core/runnables/graph.py b/libs/core/langchain_core/runnables/graph.py index 31f3cfcb1b6..e76a0a0f178 100644 --- a/libs/core/langchain_core/runnables/graph.py +++ b/libs/core/langchain_core/runnables/graph.py @@ -1,6 +1,7 @@ from __future__ import annotations import inspect +from collections import Counter from dataclasses import dataclass, field from enum import Enum from typing import ( @@ -63,12 +64,32 @@ class Edge(NamedTuple): data: Optional[Stringifiable] = None conditional: bool = False + def copy( + self, *, source: Optional[str] = None, target: Optional[str] = None + ) -> Edge: + return Edge( + source=source or self.source, + target=target or self.target, + data=self.data, + conditional=self.conditional, + ) + class Node(NamedTuple): """Node in a graph.""" id: str + name: str data: Union[Type[BaseModel], RunnableType] + metadata: Optional[Dict[str, Any]] + + def copy(self, *, id: Optional[str] = None, name: Optional[str] = None) -> Node: + return Node( + id=id or self.id, + name=name or self.name, + data=self.data, + metadata=self.metadata, + ) class Branch(NamedTuple): @@ -111,35 +132,25 @@ class MermaidDrawMethod(Enum): API = "api" # Uses Mermaid.INK API to render the graph -def node_data_str(node: Node) -> str: +def node_data_str(id: str, data: Union[Type[BaseModel], RunnableType]) -> str: """Convert the data of a node to a string. Args: node: The node to convert. + html: Whether to format the data as HTML rich text. Returns: A string representation of the data. """ from langchain_core.runnables.base import Runnable - if not is_uuid(node.id): - return node.id - elif isinstance(node.data, Runnable): - try: - data = str(node.data) - if ( - data.startswith("<") - or data[0] != data[0].upper() - or len(data.splitlines()) > 1 - ): - data = node.data.__class__.__name__ - elif len(data) > 42: - data = data[:42] + "..." - except Exception: - data = node.data.__class__.__name__ + if not is_uuid(id): + return id + elif isinstance(data, Runnable): + data_str = data.get_name() else: - data = node.data.__name__ - return data if not data.startswith("Runnable") else data[8:] + data_str = data.__name__ + return data_str if not data_str.startswith("Runnable") else data_str[8:] def node_data_json( @@ -163,7 +174,7 @@ def node_data_json( "type": "runnable", "data": { "id": node.data.lc_id(), - "name": node.data.get_name(), + "name": node_data_str(node.id, node.data), }, } elif isinstance(node.data, Runnable): @@ -171,7 +182,7 @@ def node_data_json( "type": "runnable", "data": { "id": to_json_not_implemented(node.data)["id"], - "name": node.data.get_name(), + "name": node_data_str(node.id, node.data), }, } elif inspect.isclass(node.data) and issubclass(node.data, BaseModel): @@ -183,13 +194,13 @@ def node_data_json( if with_schemas else { "type": "schema", - "data": node_data_str(node), + "data": node_data_str(node.id, node.data), } ) else: return { "type": "unknown", - "data": node_data_str(node), + "data": node_data_str(node.id, node.data), } @@ -236,12 +247,17 @@ class Graph: return uuid4().hex def add_node( - self, data: Union[Type[BaseModel], RunnableType], id: Optional[str] = None + self, + data: Union[Type[BaseModel], RunnableType], + id: Optional[str] = None, + *, + metadata: Optional[Dict[str, Any]] = None, ) -> Node: """Add a node to the graph and return it.""" if id is not None and id in self.nodes: raise ValueError(f"Node with id {id} already exists") - node = Node(id=id or self.next_id(), data=data) + id = id or self.next_id() + node = Node(id=id, data=data, metadata=metadata, name=node_data_str(id, data)) self.nodes[node.id] = node return node @@ -285,25 +301,47 @@ class Graph: # prefix each node self.nodes.update( - {prefixed(k): Node(prefixed(k), v.data) for k, v in graph.nodes.items()} + {prefixed(k): v.copy(id=prefixed(k)) for k, v in graph.nodes.items()} ) # prefix each edge's source and target self.edges.extend( [ - Edge( - prefixed(edge.source), - prefixed(edge.target), - edge.data, - edge.conditional, - ) + edge.copy(source=prefixed(edge.source), target=prefixed(edge.target)) for edge in graph.edges ] ) # return (prefixed) first and last nodes of the subgraph first, last = graph.first_node(), graph.last_node() return ( - Node(prefixed(first.id), first.data) if first else None, - Node(prefixed(last.id), last.data) if last else None, + first.copy(id=prefixed(first.id)) if first else None, + last.copy(id=prefixed(last.id)) if last else None, + ) + + def reid(self) -> Graph: + """Return a new graph with all nodes re-identified, + using their unique, readable names where possible.""" + node_labels = {node.id: node.name for node in self.nodes.values()} + node_label_counts = Counter(node_labels.values()) + + def _get_node_id(node_id: str) -> str: + label = node_labels[node_id] + if is_uuid(node_id) and node_label_counts[label] == 1: + return label + else: + return node_id + + return Graph( + nodes={ + _get_node_id(id): node.copy(id=_get_node_id(id)) + for id, node in self.nodes.items() + }, + edges=[ + edge.copy( + source=_get_node_id(edge.source), + target=_get_node_id(edge.target), + ) + for edge in self.edges + ], ) def first_node(self) -> Optional[Node]: @@ -357,7 +395,7 @@ class Graph: from langchain_core.runnables.graph_ascii import draw_ascii return draw_ascii( - {node.id: node_data_str(node) for node in self.nodes.values()}, + {node.id: node.name for node in self.nodes.values()}, self.edges, ) @@ -388,9 +426,7 @@ class Graph: ) -> Union[bytes, None]: from langchain_core.runnables.graph_png import PngDrawer - default_node_labels = { - node.id: node_data_str(node) for node in self.nodes.values() - } + default_node_labels = {node.id: node.name for node in self.nodes.values()} return PngDrawer( fontname, @@ -415,19 +451,15 @@ class Graph: ) -> str: from langchain_core.runnables.graph_mermaid import draw_mermaid - nodes = {node.id: node_data_str(node) for node in self.nodes.values()} - - first_node = self.first_node() - first_label = node_data_str(first_node) if first_node is not None else None - - last_node = self.last_node() - last_label = node_data_str(last_node) if last_node is not None else None + graph = self.reid() + first_node = graph.first_node() + last_node = graph.last_node() return draw_mermaid( - nodes=nodes, - edges=self.edges, - first_node_label=first_label, - last_node_label=last_label, + nodes=graph.nodes, + edges=graph.edges, + first_node=first_node.id if first_node else None, + last_node=last_node.id if last_node else None, with_styles=with_styles, curve_style=curve_style, node_colors=node_colors, diff --git a/libs/core/langchain_core/runnables/graph_mermaid.py b/libs/core/langchain_core/runnables/graph_mermaid.py index a5cad0a9e5c..09741c07592 100644 --- a/libs/core/langchain_core/runnables/graph_mermaid.py +++ b/libs/core/langchain_core/runnables/graph_mermaid.py @@ -1,22 +1,23 @@ import base64 import re from dataclasses import asdict -from typing import Dict, List, Optional, Tuple +from typing import Dict, List, Optional from langchain_core.runnables.graph import ( CurveStyle, Edge, MermaidDrawMethod, + Node, NodeColors, ) def draw_mermaid( - nodes: Dict[str, str], + nodes: Dict[str, Node], edges: List[Edge], *, - first_node_label: Optional[str] = None, - last_node_label: Optional[str] = None, + first_node: Optional[str] = None, + last_node: Optional[str] = None, with_styles: bool = True, curve_style: CurveStyle = CurveStyle.LINEAR, node_colors: NodeColors = NodeColors(), @@ -49,15 +50,20 @@ def draw_mermaid( # Node formatting templates default_class_label = "default" format_dict = {default_class_label: "{0}([{1}]):::otherclass"} - if first_node_label is not None: - format_dict[first_node_label] = "{0}[{0}]:::startclass" - if last_node_label is not None: - format_dict[last_node_label] = "{0}[{0}]:::endclass" + if first_node is not None: + format_dict[first_node] = "{0}[{0}]:::startclass" + if last_node is not None: + format_dict[last_node] = "{0}[{0}]:::endclass" # Add nodes to the graph - for node in nodes.values(): - node_label = format_dict.get(node, format_dict[default_class_label]).format( - _escape_node_label(node), node.split(":", 1)[-1] + for key, node in nodes.items(): + label = node.name.split(":")[-1] + if node.metadata: + label = f"{label}\n" + "\n".join( + f"{key} = {value}" for key, value in node.metadata.items() + ) + node_label = format_dict.get(key, format_dict[default_class_label]).format( + _escape_node_label(key), label ) mermaid_graph += f"\t{node_label};\n" @@ -74,9 +80,8 @@ def draw_mermaid( if not subgraph and src_prefix and src_prefix == tgt_prefix: mermaid_graph += f"\tsubgraph {src_prefix}\n" subgraph = src_prefix - adjusted_edge = _adjust_mermaid_edge(edge=edge, nodes=nodes) - source, target = adjusted_edge + source, target = edge.source, edge.target # Add BR every wrap_label_n_words words if edge.data is not None: @@ -117,17 +122,6 @@ def _escape_node_label(node_label: str) -> str: return re.sub(r"[^a-zA-Z-_0-9]", "_", node_label) -def _adjust_mermaid_edge( - edge: Edge, - nodes: Dict[str, str], -) -> Tuple[str, str]: - """Adjusts Mermaid edge to map conditional nodes to pure nodes.""" - source_node_label = nodes.get(edge.source, edge.source) - target_node_label = nodes.get(edge.target, edge.target) - - return source_node_label, target_node_label - - def _generate_mermaid_graph_styles(node_colors: NodeColors) -> str: """Generates Mermaid graph styles for different node types.""" styles = "" diff --git a/libs/core/tests/unit_tests/runnables/__snapshots__/test_fallbacks.ambr b/libs/core/tests/unit_tests/runnables/__snapshots__/test_fallbacks.ambr index c219c3290fc..5161738472b 100644 --- a/libs/core/tests/unit_tests/runnables/__snapshots__/test_fallbacks.ambr +++ b/libs/core/tests/unit_tests/runnables/__snapshots__/test_fallbacks.ambr @@ -58,7 +58,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } } ], @@ -458,7 +458,7 @@ "runnable", "RunnableWithFallbacks" ], - "name": "RunnableWithFallbacks" + "name": "WithFallbacks" } }, { @@ -498,7 +498,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -511,7 +511,7 @@ "runnable", "RunnableWithFallbacks" ], - "name": "RunnableWithFallbacks" + "name": "WithFallbacks" } }, { @@ -589,7 +589,7 @@ "runnable", "RunnablePassthrough" ], - "name": "RunnablePassthrough" + "name": "Passthrough" } }, { @@ -635,7 +635,7 @@ "runnable", "RunnablePassthrough" ], - "name": "RunnablePassthrough" + "name": "Passthrough" } } ], @@ -716,7 +716,7 @@ "runnable", "RunnableWithFallbacks" ], - "name": "RunnableWithFallbacks" + "name": "WithFallbacks" } }, { @@ -756,7 +756,7 @@ "runnable", "RunnablePassthrough" ], - "name": "RunnablePassthrough" + "name": "Passthrough" } }, { @@ -769,7 +769,7 @@ "runnable", "RunnableWithFallbacks" ], - "name": "RunnableWithFallbacks" + "name": "WithFallbacks" } }, { @@ -938,7 +938,7 @@ "runnable", "RunnableWithFallbacks" ], - "name": "RunnableWithFallbacks" + "name": "WithFallbacks" } }, { @@ -1152,7 +1152,7 @@ "runnable", "RunnableWithFallbacks" ], - "name": "RunnableWithFallbacks" + "name": "WithFallbacks" } }, { diff --git a/libs/core/tests/unit_tests/runnables/__snapshots__/test_graph.ambr b/libs/core/tests/unit_tests/runnables/__snapshots__/test_graph.ambr index a4fc7e893ac..6d92219bb71 100644 --- a/libs/core/tests/unit_tests/runnables/__snapshots__/test_graph.ambr +++ b/libs/core/tests/unit_tests/runnables/__snapshots__/test_graph.ambr @@ -36,7 +36,8 @@ graph TD; PromptInput[PromptInput]:::startclass; PromptTemplate([PromptTemplate]):::otherclass; - FakeListLLM([FakeListLLM]):::otherclass; + FakeListLLM([FakeListLLM + key = 2]):::otherclass; CommaSeparatedListOutputParser([CommaSeparatedListOutputParser]):::otherclass; CommaSeparatedListOutputParserOutput[CommaSeparatedListOutputParserOutput]:::endclass; PromptInput --> PromptTemplate; diff --git a/libs/core/tests/unit_tests/runnables/__snapshots__/test_runnable.ambr b/libs/core/tests/unit_tests/runnables/__snapshots__/test_runnable.ambr index 84652ff012a..ce3b6b109da 100644 --- a/libs/core/tests/unit_tests/runnables/__snapshots__/test_runnable.ambr +++ b/libs/core/tests/unit_tests/runnables/__snapshots__/test_runnable.ambr @@ -703,7 +703,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -1430,7 +1430,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -1518,7 +1518,7 @@ # --- # name: test_combining_sequences.3 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'runnable', 'RunnableSequence'], 'kwargs': {'first': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}]}, 'name': 'ChatPromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'ChatPromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, 'middle': [{'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo, bar'])", 'name': 'FakeListChatModel', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'FakeListChatModelInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 2, 'type': 'schema', 'data': 'FakeListChatModelOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}, 'name': 'CommaSeparatedListOutputParser', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 2, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, {'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'runnables', 'base', 'RunnableLambda'], 'repr': "RunnableLambda(lambda x: {'question': x[0] + x[1]})"}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}]}, 'name': 'ChatPromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'ChatPromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, {'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['baz, qux'])", 'name': 'FakeListChatModel', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'FakeListChatModelInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 2, 'type': 'schema', 'data': 'FakeListChatModelOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}], 'last': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}, 'name': 'CommaSeparatedListOutputParser', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 2, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}, 'name': 'RunnableSequence', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 3, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 4, 'type': 'runnable', 'data': {'id': ['langchain_core', 'runnables', 'base', 'RunnableLambda'], 'name': 'RunnableLambda'}}, {'id': 5, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 6, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 7, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 8, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}, {'source': 2, 'target': 3}, {'source': 3, 'target': 4}, {'source': 4, 'target': 5}, {'source': 5, 'target': 6}, {'source': 7, 'target': 8}, {'source': 6, 'target': 7}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}]}, 'name': 'ChatPromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'ChatPromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo, bar'])", 'name': 'FakeListChatModel', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'FakeListChatModelInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 2, 'type': 'schema', 'data': 'FakeListChatModelOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002'), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}, 'name': 'CommaSeparatedListOutputParser', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 2, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='foo, bar', id='00000000-0000-4000-8000-000000000004')}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003'), Run(id=UUID('00000000-0000-4000-8000-000000000005'), name='RunnableLambda', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'runnables', 'base', 'RunnableLambda'], 'repr': "RunnableLambda(lambda x: {'question': x[0] + x[1]})"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': ['foo', 'bar']}, outputs={'question': 'foobar'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:4'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000005'), Run(id=UUID('00000000-0000-4000-8000-000000000006'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}]}, 'name': 'ChatPromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'ChatPromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'foobar'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nicer assistant.'), HumanMessage(content='foobar')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:5'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000006'), Run(id=UUID('00000000-0000-4000-8000-000000000007'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['baz, qux'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['baz, qux'])", 'name': 'FakeListChatModel', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'FakeListChatModelInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 2, 'type': 'schema', 'data': 'FakeListChatModelOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nicer assistant.\nHuman: foobar']}, outputs={'generations': [[{'text': 'baz, qux', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'baz, qux', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000006-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:6'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000007'), Run(id=UUID('00000000-0000-4000-8000-000000000008'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}, 'name': 'CommaSeparatedListOutputParser', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 2, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='baz, qux', id='00000000-0000-4000-8000-000000000009')}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:7'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000008')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), + Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'runnable', 'RunnableSequence'], 'kwargs': {'first': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}]}, 'name': 'ChatPromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'ChatPromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, 'middle': [{'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo, bar'])", 'name': 'FakeListChatModel', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'FakeListChatModelInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 2, 'type': 'schema', 'data': 'FakeListChatModelOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}, 'name': 'CommaSeparatedListOutputParser', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 2, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, {'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'runnables', 'base', 'RunnableLambda'], 'repr': "RunnableLambda(lambda x: {'question': x[0] + x[1]})"}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}]}, 'name': 'ChatPromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'ChatPromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, {'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['baz, qux'])", 'name': 'FakeListChatModel', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'FakeListChatModelInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 2, 'type': 'schema', 'data': 'FakeListChatModelOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}], 'last': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}, 'name': 'CommaSeparatedListOutputParser', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 2, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}, 'name': 'RunnableSequence', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 3, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 4, 'type': 'runnable', 'data': {'id': ['langchain_core', 'runnables', 'base', 'RunnableLambda'], 'name': 'Lambda'}}, {'id': 5, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 6, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 7, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 8, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}, {'source': 2, 'target': 3}, {'source': 3, 'target': 4}, {'source': 4, 'target': 5}, {'source': 5, 'target': 6}, {'source': 7, 'target': 8}, {'source': 6, 'target': 7}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}]}, 'name': 'ChatPromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'ChatPromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo, bar'])", 'name': 'FakeListChatModel', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'FakeListChatModelInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 2, 'type': 'schema', 'data': 'FakeListChatModelOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002'), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}, 'name': 'CommaSeparatedListOutputParser', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 2, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='foo, bar', id='00000000-0000-4000-8000-000000000004')}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003'), Run(id=UUID('00000000-0000-4000-8000-000000000005'), name='RunnableLambda', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'runnables', 'base', 'RunnableLambda'], 'repr': "RunnableLambda(lambda x: {'question': x[0] + x[1]})"}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': ['foo', 'bar']}, outputs={'question': 'foobar'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:4'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000005'), Run(id=UUID('00000000-0000-4000-8000-000000000006'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'name': 'PromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'PromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}}}]}, 'name': 'ChatPromptTemplate', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'PromptInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'name': 'ChatPromptTemplate'}}, {'id': 2, 'type': 'schema', 'data': 'ChatPromptTemplateOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'foobar'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nicer assistant.'), HumanMessage(content='foobar')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:5'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000006'), Run(id=UUID('00000000-0000-4000-8000-000000000007'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['baz, qux'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['baz, qux'])", 'name': 'FakeListChatModel', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'FakeListChatModelInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'name': 'FakeListChatModel'}}, {'id': 2, 'type': 'schema', 'data': 'FakeListChatModelOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nicer assistant.\nHuman: foobar']}, outputs={'generations': [[{'text': 'baz, qux', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'baz, qux', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000006-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:6'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000007'), Run(id=UUID('00000000-0000-4000-8000-000000000008'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'kwargs': {}, 'name': 'CommaSeparatedListOutputParser', 'graph': {'nodes': [{'id': 0, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserInput'}, {'id': 1, 'type': 'runnable', 'data': {'id': ['langchain', 'output_parsers', 'list', 'CommaSeparatedListOutputParser'], 'name': 'CommaSeparatedListOutputParser'}}, {'id': 2, 'type': 'schema', 'data': 'CommaSeparatedListOutputParserOutput'}], 'edges': [{'source': 0, 'target': 1}, {'source': 1, 'target': 2}]}}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='baz, qux', id='00000000-0000-4000-8000-000000000009')}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:7'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000008')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), ]) # --- # name: test_each @@ -2096,7 +2096,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } } ], @@ -2137,7 +2137,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -2150,7 +2150,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } } ], @@ -2209,7 +2209,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -2222,7 +2222,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -4481,7 +4481,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } } ], @@ -4522,7 +4522,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -4535,7 +4535,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } } ], @@ -5111,7 +5111,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -5124,7 +5124,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -10214,7 +10214,7 @@ "runnable", "RunnablePassthrough" ], - "name": "RunnablePassthrough" + "name": "Passthrough" } }, { @@ -10265,7 +10265,7 @@ "runnable", "RunnablePassthrough" ], - "name": "RunnablePassthrough" + "name": "Passthrough" } }, { @@ -10278,7 +10278,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -10394,7 +10394,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -10469,7 +10469,7 @@ "runnable", "RunnablePassthrough" ], - "name": "RunnablePassthrough" + "name": "Passthrough" } }, { @@ -10482,7 +10482,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -10495,7 +10495,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -10522,7 +10522,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } } ], @@ -10875,7 +10875,7 @@ "runnable", "RunnablePassthrough" ], - "name": "RunnablePassthrough" + "name": "Passthrough" } }, { @@ -10888,7 +10888,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -10901,7 +10901,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -10928,7 +10928,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -11455,7 +11455,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -11967,7 +11967,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } } ], @@ -12031,7 +12031,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } }, { @@ -12080,7 +12080,7 @@ "base", "RunnableLambda" ], - "name": "RunnableLambda" + "name": "Lambda" } } ], diff --git a/libs/core/tests/unit_tests/runnables/test_graph.py b/libs/core/tests/unit_tests/runnables/test_graph.py index 08a81bedef2..bc80d48a5ad 100644 --- a/libs/core/tests/unit_tests/runnables/test_graph.py +++ b/libs/core/tests/unit_tests/runnables/test_graph.py @@ -33,7 +33,7 @@ def test_graph_sequence(snapshot: SnapshotAssertion) -> None: prompt = PromptTemplate.from_template("Hello, {name}!") list_parser = CommaSeparatedListOutputParser() - sequence = prompt | fake_llm | list_parser + sequence = prompt | fake_llm.with_config(metadata={"key": 2}) | list_parser graph = sequence.get_graph() assert graph.to_json() == { "nodes": [ diff --git a/pyproject.toml b/pyproject.toml index df24f6b20a0..1e6913840e9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -6,6 +6,7 @@ authors = [] license = "MIT" readme = "README.md" repository = "https://www.github.com/langchain-ai/langchain" +package-mode = false [tool.poetry.dependencies]