mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-26 00:23:25 +00:00
openai[patch]: Add API Reference docs to OpenAIEmbeddings (#25290)
Issue: [24856](https://github.com/langchain-ai/langchain/issues/24856)
This commit is contained in:
parent
e77eeee6ee
commit
ee8a585791
@ -99,21 +99,87 @@ def _process_batched_chunked_embeddings(
|
|||||||
|
|
||||||
|
|
||||||
class OpenAIEmbeddings(BaseModel, Embeddings):
|
class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||||
"""OpenAI embedding models.
|
"""OpenAI embedding model integration.
|
||||||
|
|
||||||
To use, you should have the
|
Setup:
|
||||||
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
|
Install ``langchain_openai`` and set environment variable ``OPENAI_API_KEY``.
|
||||||
as a named parameter to the constructor.
|
|
||||||
|
|
||||||
In order to use the library with Microsoft Azure endpoints, use
|
.. code-block:: bash
|
||||||
AzureOpenAIEmbeddings.
|
|
||||||
|
|
||||||
Example:
|
pip install -U langchain_openai
|
||||||
|
export OPENAI_API_KEY="your-api-key"
|
||||||
|
|
||||||
|
Key init args — embedding params:
|
||||||
|
model: str
|
||||||
|
Name of OpenAI model to use.
|
||||||
|
dimensions: Optional[int] = None
|
||||||
|
The number of dimensions the resulting output embeddings should have.
|
||||||
|
Only supported in `text-embedding-3` and later models.
|
||||||
|
|
||||||
|
Key init args — client params:
|
||||||
|
api_key: Optional[SecretStr] = None
|
||||||
|
OpenAI API key.
|
||||||
|
organization: Optional[str] = None
|
||||||
|
OpenAI organization ID. If not passed in will be read
|
||||||
|
from env var OPENAI_ORG_ID.
|
||||||
|
max_retries: int = 2
|
||||||
|
Maximum number of retries to make when generating.
|
||||||
|
request_timeout: Optional[Union[float, Tuple[float, float], Any]] = None
|
||||||
|
Timeout for requests to OpenAI completion API
|
||||||
|
|
||||||
|
See full list of supported init args and their descriptions in the params section.
|
||||||
|
|
||||||
|
Instantiate:
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
from langchain_openai import OpenAIEmbeddings
|
from langchain_openai import OpenAIEmbeddings
|
||||||
|
|
||||||
model = OpenAIEmbeddings(model="text-embedding-3-large")
|
embed = OpenAIEmbeddings(
|
||||||
|
model="text-embedding-3-large"
|
||||||
|
# With the `text-embedding-3` class
|
||||||
|
# of models, you can specify the size
|
||||||
|
# of the embeddings you want returned.
|
||||||
|
# dimensions=1024
|
||||||
|
)
|
||||||
|
|
||||||
|
Embed single text:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
input_text = "The meaning of life is 42"
|
||||||
|
vector = embeddings.embed_query("hello")
|
||||||
|
print(vector[:3])
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
|
||||||
|
|
||||||
|
Embed multiple texts:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
vectors = embeddings.embed_documents(["hello", "goodbye"])
|
||||||
|
# Showing only the first 3 coordinates
|
||||||
|
print(len(vectors))
|
||||||
|
print(vectors[0][:3])
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
2
|
||||||
|
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
|
||||||
|
|
||||||
|
Async:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
await embed.aembed_query(input_text)
|
||||||
|
print(vector[:3])
|
||||||
|
|
||||||
|
# multiple:
|
||||||
|
# await embed.aembed_documents(input_texts)
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
client: Any = Field(default=None, exclude=True) #: :meta private:
|
client: Any = Field(default=None, exclude=True) #: :meta private:
|
||||||
|
Loading…
Reference in New Issue
Block a user