Restructure docs (#11620)

This commit is contained in:
Bagatur
2023-10-10 12:55:19 -07:00
committed by GitHub
parent 7232e082de
commit eedfddac2d
1137 changed files with 72 additions and 99 deletions

View File

@@ -19,4 +19,4 @@ jobs:
run: |
# We should not encourage imports directly from main init file
# Expect for hub
git grep 'from langchain import' docs/{extras,docs_skeleton,snippets} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
git grep 'from langchain import' docs/{docs,snippets} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0

6
.gitignore vendored
View File

@@ -174,6 +174,6 @@ docs/api_reference/*/
!docs/api_reference/_static/
!docs/api_reference/templates/
!docs/api_reference/themes/
docs/docs_skeleton/build
docs/docs_skeleton/node_modules
docs/docs_skeleton/yarn.lock
docs/docs/build
docs/docs/node_modules
docs/docs/yarn.lock

4
.gitmodules vendored
View File

@@ -1,4 +0,0 @@
[submodule "docs/_docs_skeleton"]
path = docs/_docs_skeleton
url = https://github.com/langchain-ai/langchain-shared-docs
branch = main

View File

@@ -18,7 +18,7 @@ docs_clean:
rm -r docs/_dist
docs_linkcheck:
poetry run linkchecker docs/_dist/docs_skeleton/ --ignore-url node_modules
poetry run linkchecker docs/_dist/docs/ --ignore-url node_modules
api_docs_build:
poetry run python docs/api_reference/create_api_rst.py

View File

@@ -8,10 +8,10 @@ set -o xtrace
SCRIPT_DIR="$(cd "$(dirname "$0")"; pwd)"
cd "${SCRIPT_DIR}"
mkdir -p _dist/docs_skeleton
cp -r {docs_skeleton,snippets} _dist
cd _dist/docs_skeleton
poetry run nbdoc_build
poetry run python generate_api_reference_links.py
mkdir -p ../_dist
cp -r . ../_dist
cd ../_dist
poetry run nbdoc_build --srcdir docs
poetry run python scripts/generate_api_reference_links.py
yarn install
yarn start

View File

Before

Width:  |  Height:  |  Size: 559 KiB

After

Width:  |  Height:  |  Size: 559 KiB

View File

Before

Width:  |  Height:  |  Size: 157 KiB

After

Width:  |  Height:  |  Size: 157 KiB

View File

Before

Width:  |  Height:  |  Size: 235 KiB

After

Width:  |  Height:  |  Size: 235 KiB

View File

Before

Width:  |  Height:  |  Size: 148 KiB

After

Width:  |  Height:  |  Size: 148 KiB

View File

Before

Width:  |  Height:  |  Size: 3.5 MiB

After

Width:  |  Height:  |  Size: 3.5 MiB

View File

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 18 KiB

View File

Before

Width:  |  Height:  |  Size: 85 KiB

After

Width:  |  Height:  |  Size: 85 KiB

View File

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 16 KiB

View File

Before

Width:  |  Height:  |  Size: 542 B

After

Width:  |  Height:  |  Size: 542 B

View File

Before

Width:  |  Height:  |  Size: 1.2 KiB

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 15 KiB

View File

Before

Width:  |  Height:  |  Size: 103 KiB

After

Width:  |  Height:  |  Size: 103 KiB

View File

Before

Width:  |  Height:  |  Size: 136 KiB

After

Width:  |  Height:  |  Size: 136 KiB

View File

Before

Width:  |  Height:  |  Size: 34 KiB

After

Width:  |  Height:  |  Size: 34 KiB

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"# Custom Pairwise Evaluator\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/comparison/custom.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/comparison/custom.ipynb)\n",
"\n",
"You can make your own pairwise string evaluators by inheriting from `PairwiseStringEvaluator` class and overwriting the `_evaluate_string_pairs` method (and the `_aevaluate_string_pairs` method if you want to use the evaluator asynchronously).\n",
"\n",

View File

@@ -8,7 +8,7 @@
},
"source": [
"# Pairwise Embedding Distance \n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/comparison/pairwise_embedding_distance.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/comparison/pairwise_embedding_distance.ipynb)\n",
"\n",
"One way to measure the similarity (or dissimilarity) between two predictions on a shared or similar input is to embed the predictions and compute a vector distance between the two embeddings.<a name=\"cite_ref-1\"></a>[<sup>[1]</sup>](#cite_note-1)\n",
"\n",

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"# Pairwise String Comparison\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/comparison/pairwise_string.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/comparison/pairwise_string.ipynb)\n",
"\n",
"Often you will want to compare predictions of an LLM, Chain, or Agent for a given input. The `StringComparison` evaluators facilitate this so you can answer questions like:\n",
"\n",

View File

@@ -5,7 +5,7 @@
"metadata": {},
"source": [
"# Comparing Chain Outputs\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/examples/comparisons.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/examples/comparisons.ipynb)\n",
"\n",
"Suppose you have two different prompts (or LLMs). How do you know which will generate \"better\" results?\n",
"\n",

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"# Criteria Evaluation\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/string/criteria_eval_chain.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/criteria_eval_chain.ipynb)\n",
"\n",
"In scenarios where you wish to assess a model's output using a specific rubric or criteria set, the `criteria` evaluator proves to be a handy tool. It allows you to verify if an LLM or Chain's output complies with a defined set of criteria.\n",
"\n",

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"# Custom String Evaluator\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/string/custom.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/custom.ipynb)\n",
"\n",
"You can make your own custom string evaluators by inheriting from the `StringEvaluator` class and implementing the `_evaluate_strings` (and `_aevaluate_strings` for async support) methods.\n",
"\n",

View File

@@ -7,7 +7,7 @@
},
"source": [
"# Embedding Distance\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/string/embedding_distance.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/embedding_distance.ipynb)\n",
"\n",
"To measure semantic similarity (or dissimilarity) between a prediction and a reference label string, you could use a vector vector distance metric the two embedded representations using the `embedding_distance` evaluator.<a name=\"cite_ref-1\"></a>[<sup>[1]</sup>](#cite_note-1)\n",
"\n",

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"# Exact Match\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/string/exact_match.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/exact_match.ipynb)\n",
"\n",
"Probably the simplest ways to evaluate an LLM or runnable's string output against a reference label is by a simple string equivalence.\n",
"\n",

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"# Regex Match\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/string/regex_match.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/regex_match.ipynb)\n",
"\n",
"To evaluate chain or runnable string predictions against a custom regex, you can use the `regex_match` evaluator."
]

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"# String Distance\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/string/string_distance.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/string_distance.ipynb)\n",
"\n",
"One of the simplest ways to compare an LLM or chain's string output against a reference label is by using string distance measurements such as Levenshtein or postfix distance. This can be used alongside approximate/fuzzy matching criteria for very basic unit testing.\n",
"\n",

View File

@@ -6,7 +6,7 @@
"metadata": {},
"source": [
"# Custom Trajectory Evaluator\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/trajectory/custom.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/trajectory/custom.ipynb)\n",
"\n",
"You can make your own custom trajectory evaluators by inheriting from the [AgentTrajectoryEvaluator](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.AgentTrajectoryEvaluator.html#langchain.evaluation.schema.AgentTrajectoryEvaluator) class and overwriting the `_evaluate_agent_trajectory` (and `_aevaluate_agent_action`) method.\n",
"\n",

View File

@@ -8,7 +8,7 @@
},
"source": [
"# Agent Trajectory\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/evaluation/trajectory/trajectory_eval.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/trajectory/trajectory_eval.ipynb)\n",
"\n",
"Agents can be difficult to holistically evaluate due to the breadth of actions and generation they can make. We recommend using multiple evaluation techniques appropriate to your use case. One way to evaluate an agent is to look at the whole trajectory of actions taken along with their responses.\n",
"\n",

View File

Before

Width:  |  Height:  |  Size: 766 KiB

After

Width:  |  Height:  |  Size: 766 KiB

View File

Before

Width:  |  Height:  |  Size: 815 KiB

After

Width:  |  Height:  |  Size: 815 KiB

View File

@@ -8,7 +8,7 @@
},
"source": [
"# LangSmith Walkthrough\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/langsmith/walkthrough.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/langsmith/walkthrough.ipynb)\n",
"\n",
"LangChain makes it easy to prototype LLM applications and Agents. However, delivering LLM applications to production can be deceptively difficult. You will likely have to heavily customize and iterate on your prompts, chains, and other components to create a high-quality product.\n",
"\n",

View File

@@ -6,7 +6,7 @@
"source": [
"# Data anonymization with Microsoft Presidio\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/privacy/presidio_data_anonymization/index.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/privacy/presidio_data_anonymization/index.ipynb)\n",
"\n",
"## Use case\n",
"\n",

View File

@@ -6,7 +6,7 @@
"source": [
"# Mutli-language data anonymization with Microsoft Presidio\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/privacy/presidio_data_anonymization/multi_language.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/privacy/presidio_data_anonymization/multi_language.ipynb)\n",
"\n",
"\n",
"## Use case\n",

View File

@@ -6,7 +6,7 @@
"source": [
"# Reversible data anonymization with Microsoft Presidio\n",
"\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs_skeleton/docs/guides/privacy/presidio_data_anonymization/reversible.ipynb)\n",
"[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/privacy/presidio_data_anonymization/reversible.ipynb)\n",
"\n",
"\n",
"## Use case\n",

Some files were not shown because too many files have changed in this diff Show More